Abstract:In recent years, Multi-View Clustering (MVC) has been significantly advanced under the influence of deep learning. By integrating heterogeneous data from multiple views, MVC enhances clustering analysis, making multi-view fusion critical to clustering performance. However, there is a problem of low-quality data in multi-view fusion. This problem primarily arises from two reasons: 1) Certain views are contaminated by noisy data. 2) Some views suffer from missing data. This paper proposes a novel Stochastic Generative Diffusion Fusion (SGDF) method to address this problem. SGDF leverages a multiple generative mechanism for the multi-view feature of each sample. It is robust to low-quality data. Building on SGDF, we further present the Generative Diffusion Contrastive Network (GDCN). Extensive experiments show that GDCN achieves the state-of-the-art results in deep MVC tasks. The source code is publicly available at https://github.com/HackerHyper/GDCN.
Abstract:In long structured document retrieval, existing methods typically fine-tune pre-trained language models (PLMs) using contrastive learning on datasets lacking explicit structural information. This practice suffers from two critical issues: 1) current methods fail to leverage structural features and element-level semantics effectively, and 2) the lack of datasets containing structural metadata. To bridge these gaps, we propose \our, a novel contrastive learning framework. It leverages structure-aware learning to preserve semantic hierarchies and masked element alignment for fine-grained semantic discrimination. Furthermore, we release \dataset, a long structured document retrieval dataset with rich structural annotations. Extensive experiments on both released and industrial datasets across various modern PLMs, along with online A/B testing, demonstrate consistent performance improvements, boosting NDCG@10 from 73.96\% to 77.84\% on BGE-M3. The resources are available at https://github.com/xinhaoH/SEAL.
Abstract:Existing video polyp segmentation (VPS) paradigms usually struggle to balance between spatiotemporal modeling and domain generalization, limiting their applicability in real clinical scenarios. To embrace this challenge, we recast the VPS task as a track-by-detect paradigm that leverages the spatial contexts captured by the image polyp segmentation (IPS) model while integrating the temporal modeling capabilities of segment anything model 2 (SAM2). However, during long-term polyp tracking in colonoscopy videos, SAM2 suffers from error accumulation, resulting in a snowball effect that compromises segmentation stability. We mitigate this issue by repurposing SAM2 as a video polyp segmenter with two training-free modules. In particular, the intra-association filtering module eliminates spatial inaccuracies originating from the detecting stage, reducing false positives. The inter-association refinement module adaptively updates the memory bank to prevent error propagation over time, enhancing temporal coherence. Both modules work synergistically to stabilize SAM2, achieving cutting-edge performance in both in-domain and out-of-domain scenarios. Furthermore, we demonstrate the robust tracking capabilities of FreeVPS in long-untrimmed colonoscopy videos, underscoring its potential reliable clinical analysis.
Abstract:Event cameras have emerged as promising sensors for 3D reconstruction due to their ability to capture per-pixel brightness changes asynchronously. Unlike conventional frame-based cameras, they produce sparse and temporally rich data streams, which enable more accurate 3D reconstruction and open up the possibility of performing reconstruction in extreme environments such as high-speed motion, low light, or high dynamic range scenes. In this survey, we provide the first comprehensive review focused exclusively on 3D reconstruction using event cameras. The survey categorises existing works into three major types based on input modality - stereo, monocular, and multimodal systems, and further classifies them by reconstruction approach, including geometry-based, deep learning-based, and recent neural rendering techniques such as Neural Radiance Fields and 3D Gaussian Splatting. Methods with a similar research focus were organised chronologically into the most subdivided groups. We also summarise public datasets relevant to event-based 3D reconstruction. Finally, we highlight current research limitations in data availability, evaluation, representation, and dynamic scene handling, and outline promising future research directions. This survey aims to serve as a comprehensive reference and a roadmap for future developments in event-driven 3D reconstruction.
Abstract:Recent advancements in large language models (LLMs) have significantly enhanced their knowledge and generative capabilities, leading to a surge of interest in leveraging LLMs for high-quality data synthesis. However, synthetic data generation via prompting LLMs remains challenging due to LLMs' limited understanding of target data distributions and the complexity of prompt engineering, especially for structured formatted data. To address these issues, we introduce DiffLM, a controllable data synthesis framework based on variational autoencoder (VAE), which further (1) leverages diffusion models to reserve more information of original distribution and format structure in the learned latent distribution and (2) decouples the learning of target distribution knowledge from the LLM's generative objectives via a plug-and-play latent feature injection module. As we observed significant discrepancies between the VAE's latent representations and the real data distribution, the latent diffusion module is introduced into our framework to learn a fully expressive latent distribution. Evaluations on seven real-world datasets with structured formatted data (i.e., Tabular, Code and Tool data) demonstrate that DiffLM generates high-quality data, with performance on downstream tasks surpassing that of real data by 2-7 percent in certain cases. The data and code will be publicly available upon completion of internal review.
Abstract:Preference Optimization (PO), is gaining popularity as an alternative choice of Proximal Policy Optimization (PPO) for aligning Large Language Models (LLMs). Recent research on aligning LLMs iteratively with synthetic or partially synthetic data shows promising results in scaling up PO training for both academic settings and proprietary trained models such as Llama3. Despite its success, our study shows that the length exploitation issue present in PO is even more severe in Iterative Preference Optimization (IPO) due to the iterative nature of the process. In this work, we study iterative preference optimization with synthetic data. We share the findings and analysis along the way of building the iterative preference optimization pipeline. More specifically, we discuss the length exploitation issue during iterative preference optimization and propose our training objective for iterative preference optimization, namely Agreement-aware Iterative Preference Optimization (AIPO). To demonstrate the effectiveness of our method, we conduct comprehensive experiments and achieve state-of-the-art performance on MT-Bench, AlpacaEval 2.0, and Arena-Hard. Our implementation and model checkpoints will be made available at https://github.com/bytedance/AIPO.
Abstract:Colonoscopy videos provide richer information in polyp segmentation for rectal cancer diagnosis. However, the endoscope's fast moving and close-up observing make the current methods suffer from large spatial incoherence and continuous low-quality frames, and thus yield limited segmentation accuracy. In this context, we focus on robust video polyp segmentation by enhancing the adjacent feature consistency and rebuilding the reliable polyp representation. To achieve this goal, we in this paper propose SALI network, a hybrid of Short-term Alignment Module (SAM) and Long-term Interaction Module (LIM). The SAM learns spatial-aligned features of adjacent frames via deformable convolution and further harmonizes them to capture more stable short-term polyp representation. In case of low-quality frames, the LIM stores the historical polyp representations as a long-term memory bank, and explores the retrospective relations to interactively rebuild more reliable polyp features for the current segmentation. Combing SAM and LIM, the SALI network of video segmentation shows a great robustness to the spatial variations and low-visual cues. Benchmark on the large-scale SUNSEG verifies the superiority of SALI over the current state-of-the-arts by improving Dice by 2.1%, 2.5%, 4.1% and 1.9%, for the four test sub-sets, respectively. Codes are at https://github.com/Scatteredrain/SALI.
Abstract:With the launch of ChatGPT, large language models (LLMs) have attracted global attention. In the realm of article writing, LLMs have witnessed extensive utilization, giving rise to concerns related to intellectual property protection, personal privacy, and academic integrity. In response, AI-text detection has emerged to distinguish between human and machine-generated content. However, recent research indicates that these detection systems often lack robustness and struggle to effectively differentiate perturbed texts. Currently, there is a lack of systematic evaluations regarding detection performance in real-world applications, and a comprehensive examination of perturbation techniques and detector robustness is also absent. To bridge this gap, our work simulates real-world scenarios in both informal and professional writing, exploring the out-of-the-box performance of current detectors. Additionally, we have constructed 12 black-box text perturbation methods to assess the robustness of current detection models across various perturbation granularities. Furthermore, through adversarial learning experiments, we investigate the impact of perturbation data augmentation on the robustness of AI-text detectors. We have released our code and data at https://github.com/zhouying20/ai-text-detector-evaluation.
Abstract:Photometric constraint is indispensable for self-supervised monocular depth estimation. It involves warping a source image onto a target view using estimated depth&pose, and then minimizing the difference between the warped and target images. However, the endoscopic built-in light causes significant brightness fluctuations, and thus makes the photometric constraint unreliable. Previous efforts only mitigate this relying on extra models to calibrate image brightness. In this paper, we propose MonoPCC to address the brightness inconsistency radically by reshaping the photometric constraint into a cycle form. Instead of only warping the source image, MonoPCC constructs a closed loop consisting of two opposite forward-backward warping paths: from target to source and then back to target. Thus, the target image finally receives an image cycle-warped from itself, which naturally makes the constraint invariant to brightness changes. Moreover, MonoPCC transplants the source image's phase-frequency into the intermediate warped image to avoid structure lost, and also stabilizes the training via an exponential moving average (EMA) strategy to avoid frequent changes in the forward warping. The comprehensive and extensive experimental results on three datasets demonstrate that our proposed MonoPCC shows a great robustness to the brightness inconsistency, and exceeds other state-of-the-arts by reducing the absolute relative error by at least 7.27%.
Abstract:With the development of large language models (LLMs), detecting whether text is generated by a machine becomes increasingly challenging in the face of malicious use cases like the spread of false information, protection of intellectual property, and prevention of academic plagiarism. While well-trained text detectors have demonstrated promising performance on unseen test data, recent research suggests that these detectors have vulnerabilities when dealing with adversarial attacks such as paraphrasing. In this paper, we propose a framework for a broader class of adversarial attacks, designed to perform minor perturbations in machine-generated content to evade detection. We consider two attack settings: white-box and black-box, and employ adversarial learning in dynamic scenarios to assess the potential enhancement of the current detection model's robustness against such attacks. The empirical results reveal that the current detection models can be compromised in as little as 10 seconds, leading to the misclassification of machine-generated text as human-written content. Furthermore, we explore the prospect of improving the model's robustness over iterative adversarial learning. Although some improvements in model robustness are observed, practical applications still face significant challenges. These findings shed light on the future development of AI-text detectors, emphasizing the need for more accurate and robust detection methods.