Department of Radiology, Zhejiang Cancer Hospital, Hangzhou, 310022, China, Hangzhou Institute of Medicine, Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Hangzhou, 310022, China, Zhejiang Provincial Research Center for Cancer Intelligent Diagnosis and Molecular Technology, Hangzhou, 310000, China, Wenling Medical Big Data and Artificial Intelligence Research Institute, 24th Floor, Machang Road, Taizhou, 310061, China, Taizhou Key Laboratory of Minimally Invasive Interventional Therapy and Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital
Abstract:Diffusion models excel at image generation. Recent studies have shown that these models not only generate high-quality images but also encode text-image alignment information through attention maps or loss functions. This information is valuable for various downstream tasks, including segmentation, text-guided image editing, and compositional image generation. However, current methods heavily rely on the assumption of perfect text-image alignment in diffusion models, which is not the case. In this paper, we propose using zero-shot referring image segmentation as a proxy task to evaluate the pixel-level image and class-level text alignment of popular diffusion models. We conduct an in-depth analysis of pixel-text misalignment in diffusion models from the perspective of training data bias. We find that misalignment occurs in images with small sized, occluded, or rare object classes. Therefore, we propose ELBO-T2IAlign, a simple yet effective method to calibrate pixel-text alignment in diffusion models based on the evidence lower bound (ELBO) of likelihood. Our method is training-free and generic, eliminating the need to identify the specific cause of misalignment and works well across various diffusion model architectures. Extensive experiments on commonly used benchmark datasets on image segmentation and generation have verified the effectiveness of our proposed calibration approach.
Abstract:Generating high-quality Scalable Vector Graphics (SVGs) is challenging for Large Language Models (LLMs), as it requires advanced reasoning for structural validity, semantic faithfulness, and visual coherence -- capabilities in which current LLMs often fall short. In this work, we introduce Reason-SVG, a novel framework designed to enhance LLM reasoning for SVG generation. Reason-SVG pioneers the "Drawing-with-Thought" (DwT) paradigm, in which models generate both SVG code and explicit design rationales, mimicking the human creative process. Reason-SVG adopts a two-stage training strategy: First, Supervised Fine-Tuning (SFT) trains the LLM on the DwT paradigm to activate foundational reasoning abilities. Second, Reinforcement Learning (RL), utilizing Group Relative Policy Optimization (GRPO), empowers the model to generate both DwT and SVGs rationales through refined, reward-driven reasoning. To facilitate reasoning-driven SVG generation, we design a Hybrid Reward function that evaluates the presence and utility of DwT reasoning, along with structural validity, semantic alignment, and visual quality. We also introduce the SVGX-DwT-10k dataset, a high-quality corpus of 10,000 SVG-DwT pairs, where each SVG code is generated based on explicit DwT reasoning. By integrating DwT, SFT, and Hybrid Reward-guided RL, Reason-SVG significantly improves LLM performance in generating accurate and visually compelling SVGs, potentially fostering "Aha moments" in design.
Abstract:Traditional Chinese Medicine (TCM), as an effective alternative medicine, has been receiving increasing attention. In recent years, the rapid development of large language models (LLMs) tailored for TCM has underscored the need for an objective and comprehensive evaluation framework to assess their performance on real-world tasks. However, existing evaluation datasets are limited in scope and primarily text-based, lacking a unified and standardized multimodal question-answering (QA) benchmark. To address this issue, we introduce TCM-Ladder, the first multimodal QA dataset specifically designed for evaluating large TCM language models. The dataset spans multiple core disciplines of TCM, including fundamental theory, diagnostics, herbal formulas, internal medicine, surgery, pharmacognosy, and pediatrics. In addition to textual content, TCM-Ladder incorporates various modalities such as images and videos. The datasets were constructed using a combination of automated and manual filtering processes and comprise 52,000+ questions in total. These questions include single-choice, multiple-choice, fill-in-the-blank, diagnostic dialogue, and visual comprehension tasks. We trained a reasoning model on TCM-Ladder and conducted comparative experiments against 9 state-of-the-art general domain and 5 leading TCM-specific LLMs to evaluate their performance on the datasets. Moreover, we propose Ladder-Score, an evaluation method specifically designed for TCM question answering that effectively assesses answer quality regarding terminology usage and semantic expression. To our knowledge, this is the first work to evaluate mainstream general domain and TCM-specific LLMs on a unified multimodal benchmark. The datasets and leaderboard are publicly available at https://tcmladder.com or https://54.211.107.106 and will be continuously updated.
Abstract:Sparse-view scene reconstruction often faces significant challenges due to the constraints imposed by limited observational data. These limitations result in incomplete information, leading to suboptimal reconstructions using existing methodologies. To address this, we present Intern-GS, a novel approach that effectively leverages rich prior knowledge from vision foundation models to enhance the process of sparse-view Gaussian Splatting, thereby enabling high-quality scene reconstruction. Specifically, Intern-GS utilizes vision foundation models to guide both the initialization and the optimization process of 3D Gaussian splatting, effectively addressing the limitations of sparse inputs. In the initialization process, our method employs DUSt3R to generate a dense and non-redundant gaussian point cloud. This approach significantly alleviates the limitations encountered by traditional structure-from-motion (SfM) methods, which often struggle under sparse-view constraints. During the optimization process, vision foundation models predict depth and appearance for unobserved views, refining the 3D Gaussians to compensate for missing information in unseen regions. Extensive experiments demonstrate that Intern-GS achieves state-of-the-art rendering quality across diverse datasets, including both forward-facing and large-scale scenes, such as LLFF, DTU, and Tanks and Temples.
Abstract:The diverse nature of protein prediction tasks has traditionally necessitated specialized models, hindering the development of broadly applicable and computationally efficient Protein Language Models (PLMs). In this work, we introduce Prot2Token, a unified framework that overcomes these challenges by converting a wide spectrum of protein-related predictions, from sequence-level properties and residue-specific attributes to complex inter-protein interactions, into a standardized next-token prediction format. At its core, Prot2Token employs an autoregressive decoder, conditioned on embeddings from pre-trained protein encoders and guided by learnable task tokens, to perform diverse predictions. This architecture uniquely facilitates multi-task learning, enabling a single model to master numerous tasks with improved efficiency. We present extensive experimental validation across a variety of benchmarks, demonstrating Prot2Tokens strong predictive power in different types of protein-prediction tasks. Key results include significant speedups (e.g., near 1000x over AlphaFold2 with MSA) and performance often matching or exceeding specialized approaches. Beyond that, we introduce an auxiliary self-supervised decoder pre-training approach to improve spatially sensitive task performance. Prot2Token thus offers a significant step towards a versatile, high-throughput paradigm for protein modeling, promising to accelerate biological discovery and the development of novel therapeutics. The code is available at https://github.com/mahdip72/prot2token .
Abstract:3D Gaussian Splatting (3DGS) data compression is crucial for enabling efficient storage and transmission in 3D scene modeling. However, its development remains limited due to inadequate entropy models and suboptimal quantization strategies for both lossless and lossy compression scenarios, where existing methods have yet to 1) fully leverage hyperprior information to construct robust conditional entropy models, and 2) apply fine-grained, element-wise quantization strategies for improved compression granularity. In this work, we propose a novel Mixture of Priors (MoP) strategy to simultaneously address these two challenges. Specifically, inspired by the Mixture-of-Experts (MoE) paradigm, our MoP approach processes hyperprior information through multiple lightweight MLPs to generate diverse prior features, which are subsequently integrated into the MoP feature via a gating mechanism. To enhance lossless compression, the resulting MoP feature is utilized as a hyperprior to improve conditional entropy modeling. Meanwhile, for lossy compression, we employ the MoP feature as guidance information in an element-wise quantization procedure, leveraging a prior-guided Coarse-to-Fine Quantization (C2FQ) strategy with a predefined quantization step value. Specifically, we expand the quantization step value into a matrix and adaptively refine it from coarse to fine granularity, guided by the MoP feature, thereby obtaining a quantization step matrix that facilitates element-wise quantization. Extensive experiments demonstrate that our proposed 3DGS data compression framework achieves state-of-the-art performance across multiple benchmarks, including Mip-NeRF360, BungeeNeRF, DeepBlending, and Tank&Temples.
Abstract:Text classification, a fundamental task in natural language processing (NLP), aims to categorize textual data into predefined labels. Traditional methods struggled with complex linguistic structures and semantic dependencies. The advent of deep learning, particularly recurrent neural networks (RNNs) and Transformer-based models, has significantly advanced the field by enabling nuanced feature extraction and context-aware predictions. Despite improvements, existing models exhibit limitations in balancing interpretability, computational efficiency, and long-range contextual understanding. This paper proposes the Dynamic Bidirectional Elman with Attention Network (DBEAN), which integrates bidirectional temporal modelling with self-attention mechanisms. DBEAN dynamically assigns weights to critical segments of input, improving contextual representation while maintaining computational efficiency.
Abstract:Large language models (LLMs) have been one of the most important discoveries in machine learning in recent years. LLM-based artificial intelligence (AI) assistants, such as ChatGPT, have consistently attracted the attention from researchers, investors, and the general public, driving the rapid growth of this industry. With the frequent introduction of new LLMs to the market, it becomes increasingly difficult to differentiate between them, creating a demand for new LLM comparison methods. In this research, the Consistency-focused Similarity Comparison Framework (ConSCompF) for generative large language models is proposed. It compares texts generated by two LLMs and produces a similarity score, indicating the overall degree of similarity between their responses. The main advantage of this framework is that it can operate on a small number of unlabeled data, such as chatbot instruction prompts, and does not require LLM developers to disclose any information about their product. To evaluate the efficacy of ConSCompF, two experiments aimed at identifying similarities between multiple LLMs are conducted. Additionally, these experiments examine the correlation between the similarity scores generated by ConSCompF and the differences in the outputs produced by other benchmarking techniques, such as ROUGE-L. Finally, a series of few-shot LLM comparison experiments is conducted to evaluate the performance of ConSCompF in a few-shot LLM comparison scenario. The proposed framework can be used for calculating similarity matrices of multiple LLMs, which can be effectively visualized using principal component analysis (PCA). The ConSCompF output may provide useful insights into data that might have been used during LLM training and help detect possible investment fraud attempts.
Abstract:Large Language Models (LLMs) face efficiency bottlenecks due to the quadratic complexity of the attention mechanism when processing long contexts. Sparse attention methods offer a promising solution, but existing approaches often suffer from incomplete effective context and/or require complex implementation of pipeline. We present a comprehensive analysis of sparse attention for autoregressive LLMs from the respective of receptive field, recognize the suboptimal nature of existing methods for expanding the receptive field, and introduce PowerAttention, a novel sparse attention design that facilitates effective and complete context extension through the theoretical analysis. PowerAttention achieves exponential receptive field growth in $d$-layer LLMs, allowing each output token to attend to $2^d$ tokens, ensuring completeness and continuity of the receptive field. Experiments demonstrate that PowerAttention outperforms existing static sparse attention methods by $5\sim 40\%$, especially on tasks demanding long-range dependencies like Passkey Retrieval and RULER, while maintaining a comparable time complexity to sliding window attention. Efficiency evaluations further highlight PowerAttention's superior speedup in both prefilling and decoding phases compared with dynamic sparse attentions and full attention ($3.0\times$ faster on 128K context), making it a highly effective and user-friendly solution for processing long sequences in LLMs.
Abstract:Transformer-based foundation models have achieved unprecedented success with a gigantic amount of parameters and computational resources. Yet, the core building blocks of these models, the Transformer layers, and how they are arranged and configured are primarily engineered from the bottom up and driven by heuristics. For advancing next-generation architectures, it demands exploring a prototypical model that is amenable to high interpretability and of practical competence. To this end, we take a step from the top-down view and design neural networks from an energy minimization perspective. Specifically, to promote isotropic token distribution on the sphere, we formulate a modified Hopfield energy function on the subspace-embedded hypersphere, based on which Transformer layers with symmetric structures are designed as the iterative optimization for the energy function. By integrating layers with the same parameters, we propose \textit{Hyper-Spherical Energy Transformer} (Hyper-SET), an alternative to the vanilla Transformer with recurrent depth. This design inherently provides greater interpretability and allows for scaling to deeper layers without a significant increase in the number of parameters. We also empirically demonstrate that Hyper-SET achieves comparable or even superior performance on both synthetic and real-world tasks, such as solving Sudoku and masked image modeling, while utilizing fewer parameters.