Abstract:Humans naturally share information with those they are connected to, and video has become one of the dominant mediums for communication and expression on the Internet. To support the creation of high-quality large-scale video content, a modern pipeline requires a comprehensive understanding of both the raw input materials (e.g., the unedited footage captured by cameras) and the editing components (e.g., visual effects). In video editing scenarios, models must process multiple modalities (e.g., vision, audio, text) with strong background knowledge and handle flexible input lengths (e.g., hour-long raw videos), which poses significant challenges for traditional models. In this report, we introduce Vidi, a family of Large Multimodal Models (LMMs) for a wide range of video understand editing scenarios. The first release focuses on temporal retrieval, i.e., identifying the time ranges within the input videos corresponding to a given text query, which plays a critical role in intelligent editing. The model is capable of processing hour-long videos with strong temporal understanding capability, e.g., retrieve time ranges for certain queries. To support a comprehensive evaluation in real-world scenarios, we also present the VUE-TR benchmark, which introduces five key advancements. 1) Video duration: significantly longer than existing temporal retrival datasets, 2) Audio support: includes audio-based queries, 3) Query format: diverse query lengths/formats, 4) Annotation quality: ground-truth time ranges are manually annotated. 5) Evaluation metric: a refined IoU metric to support evaluation over multiple time ranges. Remarkably, Vidi significantly outperforms leading proprietary models, e.g., GPT-4o and Gemini, on the temporal retrieval task, indicating its superiority in video editing scenarios.
Abstract:Quantum Neural Networks (QNNs) have shown significant value across domains, with well-trained QNNs representing critical intellectual property often deployed via cloud-based QNN-as-a-Service (QNNaaS) platforms. Recent work has examined QNN model extraction attacks using classical and emerging quantum strategies. These attacks involve adversaries querying QNNaaS platforms to obtain labeled data for training local substitute QNNs that replicate the functionality of cloud-based models. However, existing approaches have largely overlooked the impact of varying quantum noise inherent in noisy intermediate-scale quantum (NISQ) computers, limiting their effectiveness in real-world settings. To address this limitation, we propose the CopyQNN framework, which employs a three-step data cleaning method to eliminate noisy data based on its noise sensitivity. This is followed by the integration of contrastive and transfer learning within the quantum domain, enabling efficient training of substitute QNNs using a limited but cleaned set of queried data. Experimental results on NISQ computers demonstrate that a practical implementation of CopyQNN significantly outperforms state-of-the-art QNN extraction attacks, achieving an average performance improvement of 8.73% across all tasks while reducing the number of required queries by 90x, with only a modest increase in hardware overhead.
Abstract:Large Vision-Language Models (LVLMs) have shown promising performance in vision-language understanding and reasoning tasks. However, their visual understanding behaviors remain underexplored. A fundamental question arises: to what extent do LVLMs rely on visual input, and which image regions contribute to their responses? It is non-trivial to interpret the free-form generation of LVLMs due to their complicated visual architecture (e.g., multiple encoders and multi-resolution) and variable-length outputs. In this paper, we extend existing heatmap visualization methods (e.g., iGOS++) to support LVLMs for open-ended visual question answering. We propose a method to select visually relevant tokens that reflect the relevance between generated answers and input image. Furthermore, we conduct a comprehensive analysis of state-of-the-art LVLMs on benchmarks designed to require visual information to answer. Our findings offer several insights into LVLM behavior, including the relationship between focus region and answer correctness, differences in visual attention across architectures, and the impact of LLM scale on visual understanding. The code and data are available at https://github.com/bytedance/LVLM_Interpretation.
Abstract:We analyze the problem of private learning in generalized linear contextual bandits. Our approach is based on a novel method of re-weighted regression, yielding an efficient algorithm with regret of order $\sqrt{T}+\frac{1}{\alpha}$ and $\sqrt{T}/\alpha$ in the joint and local model of $\alpha$-privacy, respectively. Further, we provide near-optimal private procedures that achieve dimension-independent rates in private linear models and linear contextual bandits. In particular, our results imply that joint privacy is almost "for free" in all the settings we consider, partially addressing the open problem posed by Azize and Basu (2024).
Abstract:Large vision-and-language models (LVLMs) typically treat visual and textual embeddings as homogeneous inputs to a large language model (LLM). However, these inputs are inherently different: visual inputs are multi-dimensional and contextually rich, often pre-encoded by models like CLIP, while textual inputs lack this structure. In this paper, we propose Decomposed Attention (D-Attn), a novel method that processes visual and textual embeddings differently by decomposing the 1-D causal self-attention in LVLMs. After the attention decomposition, D-Attn diagonalizes visual-to-visual self-attention, reducing computation from $\mathcal{O}(|V|^2)$ to $\mathcal{O}(|V|)$ for $|V|$ visual embeddings without compromising performance. Moreover, D-Attn debiases positional encodings in textual-to-visual cross-attention, further enhancing visual understanding. Finally, we introduce an $\alpha$-weighting strategy to merge visual and textual information, maximally preserving the pre-trained LLM's capabilities with minimal modifications. Extensive experiments and rigorous analyses validate the effectiveness of D-Attn, demonstrating significant improvements on multiple image benchmarks while significantly reducing computational costs. Code, data, and models will be publicly available.
Abstract:We study the problem of interactive decision making in which the underlying environment changes over time subject to given constraints. We propose a framework, which we call \textit{hybrid Decision Making with Structured Observations} (hybrid DMSO), that provides an interpolation between the stochastic and adversarial settings of decision making. Within this framework, we can analyze local differentially private (LDP) decision making, query-based learning (in particular, SQ learning), and robust and smooth decision making under the same umbrella, deriving upper and lower bounds based on variants of the Decision-Estimation Coefficient (DEC). We further establish strong connections between the DEC's behavior, the SQ dimension, local minimax complexity, learnability, and joint differential privacy. To showcase the framework's power, we provide new results for contextual bandits under the LDP constraint.
Abstract:High-quality training triplets (instruction, original image, edited image) are essential for instruction-based image editing. Predominant training datasets (e.g., InsPix2Pix) are created using text-to-image generative models (e.g., Stable Diffusion, DALL-E) which are not trained for image editing. Accordingly, these datasets suffer from inaccurate instruction following, poor detail preserving, and generation artifacts. In this paper, we propose to address the training data quality issue with multi-perspective reward data instead of refining the ground-truth image quality. 1) we first design a quantitative metric system based on best-in-class LVLM (Large Vision Language Model), i.e., GPT-4o in our case, to evaluate the generation quality from 3 perspectives, namely, instruction following, detail preserving, and generation quality. For each perspective, we collected quantitative score in $0\sim 5$ and text descriptive feedback on the specific failure points in ground-truth edited images, resulting in a high-quality editing reward dataset, i.e., RewardEdit20K. 2) We further proposed a novel training framework to seamlessly integrate the metric output, regarded as multi-reward, into editing models to learn from the imperfect training triplets. During training, the reward scores and text descriptions are encoded as embeddings and fed into both the latent space and the U-Net of the editing models as auxiliary conditions. During inference, we set these additional conditions to the highest score with no text description for failure points, to aim at the best generation outcome. Experiments indicate that our multi-reward conditioned model outperforms its no-reward counterpart on two popular editing pipelines, i.e., InsPix2Pix and SmartEdit. The code and dataset will be released.
Abstract:Recent advancements in large language models (LLMs) have significantly enhanced their knowledge and generative capabilities, leading to a surge of interest in leveraging LLMs for high-quality data synthesis. However, synthetic data generation via prompting LLMs remains challenging due to LLMs' limited understanding of target data distributions and the complexity of prompt engineering, especially for structured formatted data. To address these issues, we introduce DiffLM, a controllable data synthesis framework based on variational autoencoder (VAE), which further (1) leverages diffusion models to reserve more information of original distribution and format structure in the learned latent distribution and (2) decouples the learning of target distribution knowledge from the LLM's generative objectives via a plug-and-play latent feature injection module. As we observed significant discrepancies between the VAE's latent representations and the real data distribution, the latent diffusion module is introduced into our framework to learn a fully expressive latent distribution. Evaluations on seven real-world datasets with structured formatted data (i.e., Tabular, Code and Tool data) demonstrate that DiffLM generates high-quality data, with performance on downstream tasks surpassing that of real data by 2-7 percent in certain cases. The data and code will be publicly available upon completion of internal review.
Abstract:In this paper, we develop a unified framework for lower bound methods in statistical estimation and interactive decision making. Classical lower bound techniques -- such as Fano's inequality, Le Cam's method, and Assouad's lemma -- have been central to the study of minimax risk in statistical estimation, yet they are insufficient for the analysis of methods that collect data in an interactive manner. The recent minimax lower bounds for interactive decision making via the Decision-Estimation Coefficient (DEC) appear to be genuinely different from the classical methods. We propose a unified view of these distinct methodologies through a general algorithmic lower bound method. We further introduce a novel complexity measure, decision dimension, which facilitates the derivation of new lower bounds for interactive decision making. In particular, decision dimension provides a characterization of bandit learnability for any structured bandit model class. Further, we characterize the sample complexity of learning convex model class up to a polynomial gap with the decision dimension, addressing the remaining gap between upper and lower bounds in Foster et al. (2021, 2023).
Abstract:Throughout its lifecycle, a large language model (LLM) generates a substantially larger carbon footprint during inference than training. LLM inference requests vary in batch size, prompt length, and token generation number, while cloud providers employ different GPU types and quantities to meet diverse service-level objectives for accuracy and latency. It is crucial for both users and cloud providers to have a tool that quickly and accurately estimates the carbon impact of LLM inferences based on a combination of inference request and hardware configurations before execution. Estimating the carbon footprint of LLM inferences is more complex than training due to lower and highly variable model FLOPS utilization, rendering previous equation-based models inaccurate. Additionally, existing machine learning (ML) prediction methods either lack accuracy or demand extensive training data, as they inadequately handle the distinct prefill and decode phases, overlook hardware-specific features, and inefficiently sample uncommon inference configurations. We introduce \coo, a graph neural network (GNN)-based model that greatly improves the accuracy of LLM inference carbon footprint predictions compared to previous methods.