The unprecedented advancements in Large Language Models (LLMs) have created a profound impact on natural language processing but are yet to fully embrace the realm of 3D understanding. This paper introduces PointLLM, a preliminary effort to fill this gap, thereby enabling LLMs to understand point clouds and offering a new avenue beyond 2D visual data. PointLLM processes colored object point clouds with human instructions and generates contextually appropriate responses, illustrating its grasp of point clouds and common sense. Specifically, it leverages a point cloud encoder with a powerful LLM to effectively fuse geometric, appearance, and linguistic information. We collect a novel dataset comprising 660K simple and 70K complex point-text instruction pairs to enable a two-stage training strategy: initially aligning latent spaces and subsequently instruction-tuning the unified model. To rigorously evaluate our model's perceptual abilities and its generalization capabilities, we establish two benchmarks: Generative 3D Object Classification and 3D Object Captioning, assessed through three different methods, including human evaluation, GPT-4/ChatGPT evaluation, and traditional metrics. Experiment results show that PointLLM demonstrates superior performance over existing 2D baselines. Remarkably, in human-evaluated object captioning tasks, PointLLM outperforms human annotators in over 50% of the samples. Codes, datasets, and benchmarks are available at https://github.com/OpenRobotLab/PointLLM .
False negatives (FN) in 3D object detection, {\em e.g.}, missing predictions of pedestrians, vehicles, or other obstacles, can lead to potentially dangerous situations in autonomous driving. While being fatal, this issue is understudied in many current 3D detection methods. In this work, we propose Hard Instance Probing (HIP), a general pipeline that identifies \textit{FN} in a multi-stage manner and guides the models to focus on excavating difficult instances. For 3D object detection, we instantiate this method as FocalFormer3D, a simple yet effective detector that excels at excavating difficult objects and improving prediction recall. FocalFormer3D features a multi-stage query generation to discover hard objects and a box-level transformer decoder to efficiently distinguish objects from massive object candidates. Experimental results on the nuScenes and Waymo datasets validate the superior performance of FocalFormer3D. The advantage leads to strong performance on both detection and tracking, in both LiDAR and multi-modal settings. Notably, FocalFormer3D achieves a 70.5 mAP and 73.9 NDS on nuScenes detection benchmark, while the nuScenes tracking benchmark shows 72.1 AMOTA, both ranking 1st place on the nuScenes LiDAR leaderboard. Our code is available at \url{https://github.com/NVlabs/FocalFormer3D}.
In autonomous driving, Vehicle-Infrastructure Cooperative 3D Object Detection (VIC3D) makes use of multi-view cameras from both vehicles and traffic infrastructure, providing a global vantage point with rich semantic context of road conditions beyond a single vehicle viewpoint. Two major challenges prevail in VIC3D: 1) inherent calibration noise when fusing multi-view images, caused by time asynchrony across cameras; 2) information loss when projecting 2D features into 3D space. To address these issues, We propose a novel 3D object detection framework, Vehicles-Infrastructure Multi-view Intermediate fusion (VIMI). First, to fully exploit the holistic perspectives from both vehicles and infrastructure, we propose a Multi-scale Cross Attention (MCA) module that fuses infrastructure and vehicle features on selective multi-scales to correct the calibration noise introduced by camera asynchrony. Then, we design a Camera-aware Channel Masking (CCM) module that uses camera parameters as priors to augment the fused features. We further introduce a Feature Compression (FC) module with channel and spatial compression blocks to reduce the size of transmitted features for enhanced efficiency. Experiments show that VIMI achieves 15.61% overall AP_3D and 21.44% AP_BEV on the new VIC3D dataset, DAIR-V2X-C, significantly outperforming state-of-the-art early fusion and late fusion methods with comparable transmission cost.
Neural Radiance Fields (NeRF) has been wildly applied to various tasks for its high-quality representation of 3D scenes. It takes long per-scene training time and per-image testing time. In this paper, we present EfficientNeRF as an efficient NeRF-based method to represent 3D scene and synthesize novel-view images. Although several ways exist to accelerate the training or testing process, it is still difficult to much reduce time for both phases simultaneously. We analyze the density and weight distribution of the sampled points then propose valid and pivotal sampling at the coarse and fine stage, respectively, to significantly improve sampling efficiency. In addition, we design a novel data structure to cache the whole scene during testing to accelerate the rendering speed. Overall, our method can reduce over 88\% of training time, reach rendering speed of over 200 FPS, while still achieving competitive accuracy. Experiments prove that our method promotes the practicality of NeRF in the real world and enables many applications.
In this work, we present a unified framework for multi-modality 3D object detection, named UVTR. The proposed method aims to unify multi-modality representations in the voxel space for accurate and robust single- or cross-modality 3D detection. To this end, the modality-specific space is first designed to represent different inputs in the voxel feature space. Different from previous work, our approach preserves the voxel space without height compression to alleviate semantic ambiguity and enable spatial interactions. Benefit from the unified manner, cross-modality interaction is then proposed to make full use of inherent properties from different sensors, including knowledge transfer and modality fusion. In this way, geometry-aware expressions in point clouds and context-rich features in images are well utilized for better performance and robustness. The transformer decoder is applied to efficiently sample features from the unified space with learnable positions, which facilitates object-level interactions. In general, UVTR presents an early attempt to represent different modalities in a unified framework. It surpasses previous work in single- and multi-modality entries and achieves leading performance in the nuScenes test set with 69.7%, 55.1%, and 71.1% NDS for LiDAR, camera, and multi-modality inputs, respectively. Code is made available at https://github.com/dvlab-research/UVTR.
Camera-based 3D object detectors are welcome due to their wider deployment and lower price than LiDAR sensors. We revisit the prior stereo modeling DSGN about the stereo volume constructions for representing both 3D geometry and semantics. We polish the stereo modeling and propose our approach, DSGN++, aiming for improving information flow throughout the 2D-to-3D pipeline in the following three main aspects. First, to effectively lift the 2D information to stereo volume, we propose depth-wise plane sweeping (DPS) that allows denser connections and extracts depth-guided features. Second, for better grasping differently spaced features, we present a novel stereo volume -- Dual-view Stereo Volume (DSV) that integrates front-view and top-view features and reconstructs sub-voxel depth in the camera frustum. Third, as the foreground region becomes less dominant in 3D space, we firstly propose a multi-modal data editing strategy -- Stereo-LiDAR Copy-Paste, which ensures cross-modal alignment and improves data efficiency. Without bells and whistles, extensive experiments in various modality setups on the popular KITTI benchmark show that our method consistently outperforms other camera-based 3D detectors for all categories. Code will be released at https://github.com/chenyilun95/DSGN2.
The 3D visual grounding task aims to ground a natural language description to the targeted object in a 3D scene, which is usually represented in 3D point clouds. Previous works studied visual grounding under specific views. The vision-language correspondence learned by this way can easily fail once the view changes. In this paper, we propose a Multi-View Transformer (MVT) for 3D visual grounding. We project the 3D scene to a multi-view space, in which the position information of the 3D scene under different views are modeled simultaneously and aggregated together. The multi-view space enables the network to learn a more robust multi-modal representation for 3D visual grounding and eliminates the dependence on specific views. Extensive experiments show that our approach significantly outperforms all state-of-the-art methods. Specifically, on Nr3D and Sr3D datasets, our method outperforms the best competitor by 11.2% and 7.1% and even surpasses recent work with extra 2D assistance by 5.9% and 6.6%. Our code is available at https://github.com/sega-hsj/MVT-3DVG.
LiDAR and camera are two important sensors for 3D object detection in autonomous driving. Despite the increasing popularity of sensor fusion in this field, the robustness against inferior image conditions, e.g., bad illumination and sensor misalignment, is under-explored. Existing fusion methods are easily affected by such conditions, mainly due to a hard association of LiDAR points and image pixels, established by calibration matrices. We propose TransFusion, a robust solution to LiDAR-camera fusion with a soft-association mechanism to handle inferior image conditions. Specifically, our TransFusion consists of convolutional backbones and a detection head based on a transformer decoder. The first layer of the decoder predicts initial bounding boxes from a LiDAR point cloud using a sparse set of object queries, and its second decoder layer adaptively fuses the object queries with useful image features, leveraging both spatial and contextual relationships. The attention mechanism of the transformer enables our model to adaptively determine where and what information should be taken from the image, leading to a robust and effective fusion strategy. We additionally design an image-guided query initialization strategy to deal with objects that are difficult to detect in point clouds. TransFusion achieves state-of-the-art performance on large-scale datasets. We provide extensive experiments to demonstrate its robustness against degenerated image quality and calibration errors. We also extend the proposed method to the 3D tracking task and achieve the 1st place in the leaderboard of nuScenes tracking, showing its effectiveness and generalization capability.
Accurate localization is of crucial importance for autonomous driving tasks. Nowadays, we have seen a lot of sensor-rich vehicles (e.g. Robo-taxi) driving on the street autonomously, which rely on high-accurate sensors (e.g. Lidar and RTK GPS) and high-resolution map. However, low-cost production cars cannot afford such high expenses on sensors and maps. How to reduce costs? How do sensor-rich vehicles benefit low-cost cars? In this paper, we proposed a light-weight localization solution, which relies on low-cost cameras and compact visual semantic maps. The map is easily produced and updated by sensor-rich vehicles in a crowd-sourced way. Specifically, the map consists of several semantic elements, such as lane line, crosswalk, ground sign, and stop line on the road surface. We introduce the whole framework of on-vehicle mapping, on-cloud maintenance, and user-end localization. The map data is collected and preprocessed on vehicles. Then, the crowd-sourced data is uploaded to a cloud server. The mass data from multiple vehicles are merged on the cloud so that the semantic map is updated in time. Finally, the semantic map is compressed and distributed to production cars, which use this map for localization. We validate the performance of the proposed map in real-world experiments and compare it against other algorithms. The average size of the semantic map is $36$ kb/km. We highlight that this framework is a reliable and practical localization solution for autonomous driving.
Autonomous valet parking is a specific application for autonomous vehicles. In this task, vehicles need to navigate in narrow, crowded and GPS-denied parking lots. Accurate localization ability is of great importance. Traditional visual-based methods suffer from tracking lost due to texture-less regions, repeated structures, and appearance changes. In this paper, we exploit robust semantic features to build the map and localize vehicles in parking lots. Semantic features contain guide signs, parking lines, speed bumps, etc, which typically appear in parking lots. Compared with traditional features, these semantic features are long-term stable and robust to the perspective and illumination change. We adopt four surround-view cameras to increase the perception range. Assisting by an IMU (Inertial Measurement Unit) and wheel encoders, the proposed system generates a global visual semantic map. This map is further used to localize vehicles at the centimeter level. We analyze the accuracy and recall of our system and compare it against other methods in real experiments. Furthermore, we demonstrate the practicability of the proposed system by the autonomous parking application.