Fudan university
Abstract:The "end-to-end" label for LLMs is a misnomer. In practice, they depend on a non-differentiable decoding process that requires laborious, hand-tuning of hyperparameters like temperature and top-p. This paper introduces AutoDeco, a novel architecture that enables truly "end-to-end" generation by learning to control its own decoding strategy. We augment the standard transformer with lightweight heads that, at each step, dynamically predict context-specific temperature and top-p values alongside the next-token logits. This approach transforms decoding into a parametric, token-level process, allowing the model to self-regulate its sampling strategy within a single forward pass. Through extensive experiments on eight benchmarks, we demonstrate that AutoDeco not only significantly outperforms default decoding strategies but also achieves performance comparable to an oracle-tuned baseline derived from "hacking the test set"-a practical upper bound for any static method. Crucially, we uncover an emergent capability for instruction-based decoding control: the model learns to interpret natural language commands (e.g., "generate with low randomness") and adjusts its predicted temperature and top-p on a token-by-token basis, opening a new paradigm for steerable and interactive LLM decoding.
Abstract:Most scientific materials compress reasoning, presenting conclusions while omitting the derivational chains that justify them. This compression hinders verification by lacking explicit, step-wise justifications and inhibits cross-domain links by collapsing the very pathways that establish the logical and causal connections between concepts. We introduce a scalable framework that decompresses scientific reasoning, constructing a verifiable Long Chain-of-Thought (LCoT) knowledge base and projecting it into an emergent encyclopedia, SciencePedia. Our pipeline operationalizes an endpoint-driven, reductionist strategy: a Socratic agent, guided by a curriculum of around 200 courses, generates approximately 3 million first-principles questions. To ensure high fidelity, multiple independent solver models generate LCoTs, which are then rigorously filtered by prompt sanitization and cross-model answer consensus, retaining only those with verifiable endpoints. This verified corpus powers the Brainstorm Search Engine, which performs inverse knowledge search -- retrieving diverse, first-principles derivations that culminate in a target concept. This engine, in turn, feeds the Plato synthesizer, which narrates these verified chains into coherent articles. The initial SciencePedia comprises approximately 200,000 fine-grained entries spanning mathematics, physics, chemistry, biology, engineering, and computation. In evaluations across six disciplines, Plato-synthesized articles (conditioned on retrieved LCoTs) exhibit substantially higher knowledge-point density and significantly lower factual error rates than an equally-prompted baseline without retrieval (as judged by an external LLM). Built on this verifiable LCoT knowledge base, this reasoning-centric approach enables trustworthy, cross-domain scientific synthesis at scale and establishes the foundation for an ever-expanding encyclopedia.
Abstract:Marked Temporal Point Process (MTPP) has been well studied to model the event distribution in marked event streams, which can be used to predict the mark and arrival time of the next event. However, existing studies overlook that the distribution of event marks is highly imbalanced in many real-world applications, with some marks being frequent but others rare. The imbalance poses a significant challenge to the performance of the next event prediction, especially for events of rare marks. To address this issue, we propose a thresholding method, which learns thresholds to tune the mark probability normalized by the mark's prior probability to optimize mark prediction, rather than predicting the mark directly based on the mark probability as in existing studies. In conjunction with this method, we predict the mark first and then the time. In particular, we develop a novel neural MTPP model to support effective time sampling and estimation of mark probability without computationally expensive numerical improper integration. Extensive experiments on real-world datasets demonstrate the superior performance of our solution against various baselines for the next event mark and time prediction. The code is available at https://github.com/undes1red/IFNMTPP.
Abstract:Class-Incremental Learning (CIL) aims to endow models with the ability to continuously adapt to evolving data streams. Recent advances in pre-trained vision-language models (e.g., CLIP) provide a powerful foundation for this task. However, existing approaches often rely on simplistic templates, such as "a photo of a [CLASS]", which overlook the hierarchical nature of visual concepts. For example, recognizing "cat" versus "car" depends on coarse-grained cues, while distinguishing "cat" from "lion" requires fine-grained details. Similarly, the current feature mapping in CLIP relies solely on the representation from the last layer, neglecting the hierarchical information contained in earlier layers. In this work, we introduce HiErarchical Representation MAtchiNg (HERMAN) for CLIP-based CIL. Our approach leverages LLMs to recursively generate discriminative textual descriptors, thereby augmenting the semantic space with explicit hierarchical cues. These descriptors are matched to different levels of the semantic hierarchy and adaptively routed based on task-specific requirements, enabling precise discrimination while alleviating catastrophic forgetting in incremental tasks. Extensive experiments on multiple benchmarks demonstrate that our method consistently achieves state-of-the-art performance.




Abstract:In today's fast-paced digital communication, the surge in network traffic data and frequency demands robust and precise network intrusion solutions. Conventional machine learning methods struggle to grapple with complex patterns within the vast network intrusion datasets, which suffer from data scarcity and class imbalance. As a result, we have integrated machine learning and deep learning techniques within the network intrusion detection system to bridge this gap. This study has developed TrailGate, a novel framework that combines machine learning and deep learning techniques. By integrating Transformer and Bidirectional Gated Recurrent Unit (BiGRU) architectures with advanced feature selection strategies and supplemented by data augmentation techniques, TrailGate can identifies common attack types and excels at detecting and mitigating emerging threats. This algorithmic fusion excels at detecting common and well-understood attack types and has the unique ability to swiftly identify and neutralize emerging threats that stem from existing paradigms.
Abstract:Recent breakthroughs in generative AI have transformed recommender systems through end-to-end generation. OneRec reformulates recommendation as an autoregressive generation task, achieving high Model FLOPs Utilization. While OneRec-V1 has shown significant empirical success in real-world deployment, two critical challenges hinder its scalability and performance: (1) inefficient computational allocation where 97.66% of resources are consumed by sequence encoding rather than generation, and (2) limitations in reinforcement learning relying solely on reward models. To address these challenges, we propose OneRec-V2, featuring: (1) Lazy Decoder-Only Architecture: Eliminates encoder bottlenecks, reducing total computation by 94% and training resources by 90%, enabling successful scaling to 8B parameters. (2) Preference Alignment with Real-World User Interactions: Incorporates Duration-Aware Reward Shaping and Adaptive Ratio Clipping to better align with user preferences using real-world feedback. Extensive A/B tests on Kuaishou demonstrate OneRec-V2's effectiveness, improving App Stay Time by 0.467%/0.741% while balancing multi-objective recommendations. This work advances generative recommendation scalability and alignment with real-world feedback, representing a step forward in the development of end-to-end recommender systems.
Abstract:LLM app stores are quickly emerging as platforms that gather a wide range of intelligent applications based on LLMs, giving users many choices for content creation, coding support, education, and more. However, the current methods for ranking and recommending apps in these stores mostly rely on static metrics like user activity and favorites, which makes it hard for users to efficiently find high-quality apps. To address these challenges, we propose LaQual, an automated framework for evaluating the quality of LLM apps. LaQual consists of three main stages: first, it labels and classifies LLM apps in a hierarchical way to accurately match them to different scenarios; second, it uses static indicators, such as time-weighted user engagement and functional capability metrics, to filter out low-quality apps; and third, it conducts a dynamic, scenario-adaptive evaluation, where the LLM itself generates scenario-specific evaluation metrics, scoring rules, and tasks for a thorough quality assessment. Experiments on a popular LLM app store show that LaQual is effective. Its automated scores are highly consistent with human judgments (with Spearman's rho of 0.62 and p=0.006 in legal consulting, and rho of 0.60 and p=0.009 in travel planning). By effectively screening, LaQual can reduce the pool of candidate LLM apps by 66.7% to 81.3%. User studies further confirm that LaQual significantly outperforms baseline systems in decision confidence, comparison efficiency (with average scores of 5.45 compared to 3.30), and the perceived value of its evaluation reports (4.75 versus 2.25). Overall, these results demonstrate that LaQual offers a scalable, objective, and user-centered solution for finding and recommending high-quality LLM apps in real-world use cases.
Abstract:Recent advances in large language models (LLMs) have enabled realistic user simulators for developing and evaluating recommender systems (RSs). However, existing LLM-based simulators for RSs face two major limitations: (1) static and single-step prompt-based inference that leads to inaccurate and incomplete user profile construction; (2) unrealistic and single-round recommendation-feedback interaction pattern that fails to capture real-world scenarios. To address these limitations, we propose DGDPO (Diagnostic-Guided Dynamic Profile Optimization), a novel framework that constructs user profile through a dynamic and iterative optimization process to enhance the simulation fidelity. Specifically, DGDPO incorporates two core modules within each optimization loop: firstly, a specialized LLM-based diagnostic module, calibrated through our novel training strategy, accurately identifies specific defects in the user profile. Subsequently, a generalized LLM-based treatment module analyzes the diagnosed defect and generates targeted suggestions to refine the profile. Furthermore, unlike existing LLM-based user simulators that are limited to single-round interactions, we are the first to integrate DGDPO with sequential recommenders, enabling a bidirectional evolution where user profiles and recommendation strategies adapt to each other over multi-round interactions. Extensive experiments conducted on three real-world datasets demonstrate the effectiveness of our proposed framework.
Abstract:Natural disasters such as hurricanes and wildfires increasingly introduce unusual disturbance on economic activities, which are especially likely to reshape commercial land use pattern given their sensitive to customer visitation. However, current modeling approaches are limited in capturing such complex interplay between human activities and commercial land use change under and following disturbances. Such interactions have been more effectively captured in current resilient urban planning theories. This study designs and calibrates a Urban Theory-Informed Spatio-Temporal Attention Model for Predicting Post-Disaster Commercial Land Use Change (Urban-STA4CLC) to predict both the yearly decline and expansion of commercial land use at census block level under cumulative impact of disasters on human activities over two years. Guided by urban theories, Urban-STA4CLC integrates both spatial and temporal attention mechanisms with three theory-informed modules. Resilience theory guides a disaster-aware temporal attention module that captures visitation dynamics. Spatial economic theory informs a multi-relational spatial attention module for inter-block representation. Diffusion theory contributes a regularization term that constrains land use transitions. The model performs significantly better than non-theoretical baselines in predicting commercial land use change under the scenario of recurrent hurricanes, with around 19% improvement in F1 score (0.8763). The effectiveness of the theory-guided modules was further validated through ablation studies. The research demonstrates that embedding urban theory into commercial land use modeling models may substantially enhance the capacity to capture its gains and losses. These advances in commercial land use modeling contribute to land use research that accounts for cumulative impacts of recurrent disasters and shifts in economic activity patterns.
Abstract:Class-Incremental Learning (CIL) requires a learning system to continually learn new classes without forgetting. Existing pre-trained model-based CIL methods often freeze the pre-trained network and adapt to incremental tasks using additional lightweight modules such as adapters. However, incorrect module selection during inference hurts performance, and task-specific modules often overlook shared general knowledge, leading to errors on distinguishing between similar classes across tasks. To address the aforementioned challenges, we propose integrating Task-Specific and Universal Adapters (TUNA) in this paper. Specifically, we train task-specific adapters to capture the most crucial features relevant to their respective tasks and introduce an entropy-based selection mechanism to choose the most suitable adapter. Furthermore, we leverage an adapter fusion strategy to construct a universal adapter, which encodes the most discriminative features shared across tasks. We combine task-specific and universal adapter predictions to harness both specialized and general knowledge during inference. Extensive experiments on various benchmark datasets demonstrate the state-of-the-art performance of our approach. Code is available at: https://github.com/LAMDA-CL/ICCV2025-TUNA