Abstract:Humans can intuitively compose and arrange scenes in the 3D space for photography. However, can advanced AI image generators plan scenes with similar 3D spatial awareness when creating images from text or image prompts? We present GenSpace, a novel benchmark and evaluation pipeline to comprehensively assess the spatial awareness of current image generation models. Furthermore, standard evaluations using general Vision-Language Models (VLMs) frequently fail to capture the detailed spatial errors. To handle this challenge, we propose a specialized evaluation pipeline and metric, which reconstructs 3D scene geometry using multiple visual foundation models and provides a more accurate and human-aligned metric of spatial faithfulness. Our findings show that while AI models create visually appealing images and can follow general instructions, they struggle with specific 3D details like object placement, relationships, and measurements. We summarize three core limitations in the spatial perception of current state-of-the-art image generation models: 1) Object Perspective Understanding, 2) Egocentric-Allocentric Transformation and 3) Metric Measurement Adherence, highlighting possible directions for improving spatial intelligence in image generation.
Abstract:Text-to-audio (T2A) generation has achieved remarkable progress in generating a variety of audio outputs from language prompts. However, current state-of-the-art T2A models still struggle to satisfy human preferences for prompt-following and acoustic quality when generating complex multi-event audio. To improve the performance of the model in these high-level applications, we propose to enhance the basic capabilities of the model with AI feedback learning. First, we introduce fine-grained AI audio scoring pipelines to: 1) verify whether each event in the text prompt is present in the audio (Event Occurrence Score), 2) detect deviations in event sequences from the language description (Event Sequence Score), and 3) assess the overall acoustic and harmonic quality of the generated audio (Acoustic&Harmonic Quality). We evaluate these three automatic scoring pipelines and find that they correlate significantly better with human preferences than other evaluation metrics. This highlights their value as both feedback signals and evaluation metrics. Utilizing our robust scoring pipelines, we construct a large audio preference dataset, T2A-FeedBack, which contains 41k prompts and 249k audios, each accompanied by detailed scores. Moreover, we introduce T2A-EpicBench, a benchmark that focuses on long captions, multi-events, and story-telling scenarios, aiming to evaluate the advanced capabilities of T2A models. Finally, we demonstrate how T2A-FeedBack can enhance current state-of-the-art audio model. With simple preference tuning, the audio generation model exhibits significant improvements in both simple (AudioCaps test set) and complex (T2A-EpicBench) scenarios.
Abstract:This work presents Prior Depth Anything, a framework that combines incomplete but precise metric information in depth measurement with relative but complete geometric structures in depth prediction, generating accurate, dense, and detailed metric depth maps for any scene. To this end, we design a coarse-to-fine pipeline to progressively integrate the two complementary depth sources. First, we introduce pixel-level metric alignment and distance-aware weighting to pre-fill diverse metric priors by explicitly using depth prediction. It effectively narrows the domain gap between prior patterns, enhancing generalization across varying scenarios. Second, we develop a conditioned monocular depth estimation (MDE) model to refine the inherent noise of depth priors. By conditioning on the normalized pre-filled prior and prediction, the model further implicitly merges the two complementary depth sources. Our model showcases impressive zero-shot generalization across depth completion, super-resolution, and inpainting over 7 real-world datasets, matching or even surpassing previous task-specific methods. More importantly, it performs well on challenging, unseen mixed priors and enables test-time improvements by switching prediction models, providing a flexible accuracy-efficiency trade-off while evolving with advancements in MDE models.
Abstract:Prompt learning has demonstrated promising results in fine-tuning pre-trained multimodal models. However, the performance improvement is limited when applied to more complex and fine-grained tasks. The reason is that most existing methods directly optimize the parameters involved in the prompt generation process through loss backpropagation, which constrains the richness and specificity of the prompt representations. In this paper, we propose Diffusion-Driven Prompt Generator (Diff-Prompt), aiming to use the diffusion model to generate rich and fine-grained prompt information for complex downstream tasks. Specifically, our approach consists of three stages. In the first stage, we train a Mask-VAE to compress the masks into latent space. In the second stage, we leverage an improved Diffusion Transformer (DiT) to train a prompt generator in the latent space, using the masks for supervision. In the third stage, we align the denoising process of the prompt generator with the pre-trained model in the semantic space, and use the generated prompts to fine-tune the model. We conduct experiments on a complex pixel-level downstream task, referring expression comprehension, and compare our method with various parameter-efficient fine-tuning approaches. Diff-Prompt achieves a maximum improvement of 8.87 in R@1 and 14.05 in R@5 compared to the foundation model and also outperforms other state-of-the-art methods across multiple metrics. The experimental results validate the effectiveness of our approach and highlight the potential of using generative models for prompt generation. Code is available at https://github.com/Kelvin-ywc/diff-prompt.
Abstract:Recent advancements in robotic manipulation have highlighted the potential of intermediate representations for improving policy generalization. In this work, we explore grounding masks as an effective intermediate representation, balancing two key advantages: (1) effective spatial guidance that specifies target objects and placement areas while also conveying information about object shape and size, and (2) broad generalization potential driven by large-scale vision-language models pretrained on diverse grounding datasets. We introduce RoboGround, a grounding-aware robotic manipulation system that leverages grounding masks as an intermediate representation to guide policy networks in object manipulation tasks. To further explore and enhance generalization, we propose an automated pipeline for generating large-scale, simulated data with a diverse set of objects and instructions. Extensive experiments show the value of our dataset and the effectiveness of grounding masks as intermediate guidance, significantly enhancing the generalization abilities of robot policies.
Abstract:Universal sound separation aims to extract clean audio tracks corresponding to distinct events from mixed audio, which is critical for artificial auditory perception. However, current methods heavily rely on artificially mixed audio for training, which limits their ability to generalize to naturally mixed audio collected in real-world environments. To overcome this limitation, we propose ClearSep, an innovative framework that employs a data engine to decompose complex naturally mixed audio into multiple independent tracks, thereby allowing effective sound separation in real-world scenarios. We introduce two remix-based evaluation metrics to quantitatively assess separation quality and use these metrics as thresholds to iteratively apply the data engine alongside model training, progressively optimizing separation performance. In addition, we propose a series of training strategies tailored to these separated independent tracks to make the best use of them. Extensive experiments demonstrate that ClearSep achieves state-of-the-art performance across multiple sound separation tasks, highlighting its potential for advancing sound separation in natural audio scenarios. For more examples and detailed results, please visit our demo page at https://clearsep.github.io.
Abstract:Large language models (LLMs) are increasingly leveraged as foundational backbones in the development of advanced recommender systems, offering enhanced capabilities through their extensive knowledge and reasoning. Existing llm-based recommender systems (RSs) often face challenges due to the significant differences between the linguistic semantics of pre-trained LLMs and the collaborative semantics essential for RSs. These systems use pre-trained linguistic semantics but learn collaborative semantics from scratch via the llm-Backbone. However, LLMs are not designed for recommendations, leading to inefficient collaborative learning, weak result correlations, and poor integration of traditional RS features. To address these challenges, we propose EAGER-LLM, a decoder-only llm-based generative recommendation framework that integrates endogenous and exogenous behavioral and semantic information in a non-intrusive manner. Specifically, we propose 1)dual-source knowledge-rich item indices that integrates indexing sequences for exogenous signals, enabling efficient link-wide processing; 2)non-invasive multiscale alignment reconstruction tasks guide the model toward a deeper understanding of both collaborative and semantic signals; 3)an annealing adapter designed to finely balance the model's recommendation performance with its comprehension capabilities. We demonstrate EAGER-LLM's effectiveness through rigorous testing on three public benchmarks.
Abstract:With the rapid development of large language models, researchers have created increasingly advanced spoken dialogue systems that can naturally converse with humans. However, these systems still struggle to handle the full complexity of real-world conversations, including audio events, musical contexts, and emotional expressions, mainly because current dialogue datasets are constrained in both scale and scenario diversity. In this paper, we propose leveraging synthetic data to enhance the dialogue models across diverse scenarios. We introduce ShareChatX, the first comprehensive, large-scale dataset for spoken dialogue that spans diverse scenarios. Based on this dataset, we introduce OmniChat, a multi-turn dialogue system with a heterogeneous feature fusion module, designed to optimize feature selection in different dialogue contexts. In addition, we explored critical aspects of training dialogue systems using synthetic data. Through comprehensive experimentation, we determined the ideal balance between synthetic and real data, achieving state-of-the-art results on the real-world dialogue dataset DailyTalk. We also highlight the crucial importance of synthetic data in tackling diverse, complex dialogue scenarios, especially those involving audio and music. For more details, please visit our demo page at \url{https://sharechatx.github.io/}.
Abstract:Orientation is a key attribute of objects, crucial for understanding their spatial pose and arrangement in images. However, practical solutions for accurate orientation estimation from a single image remain underexplored. In this work, we introduce Orient Anything, the first expert and foundational model designed to estimate object orientation in a single- and free-view image. Due to the scarcity of labeled data, we propose extracting knowledge from the 3D world. By developing a pipeline to annotate the front face of 3D objects and render images from random views, we collect 2M images with precise orientation annotations. To fully leverage the dataset, we design a robust training objective that models the 3D orientation as probability distributions of three angles and predicts the object orientation by fitting these distributions. Besides, we employ several strategies to improve synthetic-to-real transfer. Our model achieves state-of-the-art orientation estimation accuracy in both rendered and real images and exhibits impressive zero-shot ability in various scenarios. More importantly, our model enhances many applications, such as comprehension and generation of complex spatial concepts and 3D object pose adjustment.
Abstract:Three-dimensional (3D) point clouds are becoming more and more popular for representing 3D objects and scenes. Due to limited network bandwidth, efficient compression of 3D point clouds is crucial. To tackle this challenge, the Moving Picture Experts Group (MPEG) is actively developing the Geometry-based Point Cloud Compression (G-PCC) standard, incorporating innovative methods to optimize compression, such as the Region-Adaptive Hierarchical Transform (RAHT) nestled within a layer-by-layer octree-tree structure. Nevertheless, a notable problem still exists in RAHT, i.e., the proportion of zero residuals in the last few RAHT layers leads to unnecessary bitrate consumption. To address this problem, we propose an adaptive skip coding method for RAHT, which adaptively determines whether to encode the residuals of the last several layers or not, thereby improving the coding efficiency. In addition, we propose a rate-distortion cost calculation method associated with an adaptive Lagrange multiplier. Experimental results demonstrate that the proposed method achieves average Bj{\o}ntegaard rate improvements of -3.50%, -5.56%, and -4.18% for the Luma, Cb, and Cr components, respectively, on dynamic point clouds, when compared with the state-of-the-art G-PCC reference software under the common test conditions recommended by MPEG.