Max
Abstract:Large vision-language models (LVLMs) exhibit remarkable capabilities in cross-modal tasks but face significant safety challenges, which undermine their reliability in real-world applications. Efforts have been made to build LVLM safety evaluation benchmarks to uncover their vulnerability. However, existing benchmarks are hindered by their labor-intensive construction process, static complexity, and limited discriminative power. Thus, they may fail to keep pace with rapidly evolving models and emerging risks. To address these limitations, we propose VLSafetyBencher, the first automated system for LVLM safety benchmarking. VLSafetyBencher introduces four collaborative agents: Data Preprocessing, Generation, Augmentation, and Selection agents to construct and select high-quality samples. Experiments validates that VLSafetyBencher can construct high-quality safety benchmarks within one week at a minimal cost. The generated benchmark effectively distinguish safety, with a safety rate disparity of 70% between the most and least safe models.
Abstract:Visual quality assessment (VQA) is increasingly shifting from scalar score prediction toward interpretable quality understanding -- a paradigm that demands \textit{fine-grained spatiotemporal perception} and \textit{auxiliary contextual information}. Current approaches rely on supervised fine-tuning or reinforcement learning on curated instruction datasets, which involve labor-intensive annotation and are prone to dataset-specific biases. To address these challenges, we propose \textbf{QualiRAG}, a \textit{training-free} \textbf{R}etrieval-\textbf{A}ugmented \textbf{G}eneration \textbf{(RAG)} framework that systematically leverages the latent perceptual knowledge of large multimodal models (LMMs) for visual quality perception. Unlike conventional RAG that retrieves from static corpora, QualiRAG dynamically generates auxiliary knowledge by decomposing questions into structured requests and constructing four complementary knowledge sources: \textit{visual metadata}, \textit{subject localization}, \textit{global quality summaries}, and \textit{local quality descriptions}, followed by relevance-aware retrieval for evidence-grounded reasoning. Extensive experiments show that QualiRAG achieves substantial improvements over open-source general-purpose LMMs and VQA-finetuned LMMs on visual quality understanding tasks, and delivers competitive performance on visual quality comparison tasks, demonstrating robust quality assessment capabilities without any task-specific training. The code will be publicly available at https://github.com/clh124/QualiRAG.
Abstract:This document consolidates publicly reported technical details about Metas Llama 4 model family. It summarizes (i) released variants (Scout and Maverick) and the broader herd context including the previewed Behemoth teacher model, (ii) architectural characteristics beyond a high-level MoE description covering routed/shared-expert structure, early-fusion multimodality, and long-context design elements reported for Scout (iRoPE and length generalization strategies), (iii) training disclosures spanning pre-training, mid-training for long-context extension, and post-training methodology (lightweight SFT, online RL, and lightweight DPO) as described in release materials, (iv) developer-reported benchmark results for both base and instruction-tuned checkpoints, and (v) practical deployment constraints observed across major serving environments, including provider-specific context limits and quantization packaging. The manuscript also summarizes licensing obligations relevant to redistribution and derivative naming, and reviews publicly described safeguards and evaluation practices. The goal is to provide a compact technical reference for researchers and practitioners who need precise, source-backed facts about Llama 4.




Abstract:Identifying and addressing performance anti-patterns in machine learning (ML) models is critical for efficient training and inference, but it typically demands deep expertise spanning system infrastructure, ML models and kernel development. While large tech companies rely on dedicated ML infrastructure engineers to analyze torch traces and benchmarks, such resource-intensive workflows are largely inaccessible to computer vision researchers in general. Among the challenges, pinpointing problematic trace segments within lengthy execution traces remains the most time-consuming task, and is difficult to automate with current ML models, including LLMs. In this work, we present the first benchmark dataset specifically designed to evaluate and improve ML models' ability to detect anti patterns in traces. Our dataset contains over 600 PyTorch traces from diverse computer vision models classification, detection, segmentation, and generation collected across multiple hardware platforms. We also propose a novel iterative approach: a lightweight ML model first detects trace segments with anti patterns, followed by a large language model (LLM) for fine grained classification and targeted feedback. Experimental results demonstrate that our method significantly outperforms unsupervised clustering and rule based statistical techniques for detecting anti pattern regions. Our method also effectively compensates LLM's limited context length and reasoning inefficiencies.




Abstract:Accurate geometric modeling of the aortic valve from 3D CT images is essential for biomechanical analysis and patient-specific simulations to assess valve health or make a preoperative plan. However, it remains challenging to generate aortic valve meshes with both high-quality and consistency across different patients. Traditional approaches often produce triangular meshes with irregular topologies, which can result in poorly shaped elements and inconsistent correspondence due to inter-patient anatomical variation. In this work, we address these challenges by introducing a template-fitting pipeline with deep neural networks to generate structured quad (i.e., quadrilateral) meshes from 3D CT images to represent aortic valve geometries. By remeshing aortic valves of all patients with a common quad mesh template, we ensure a uniform mesh topology with consistent node-to-node and element-to-element correspondence across patients. This consistency enables us to simplify the learning objective of the deep neural networks, by employing a loss function with only two terms (i.e., a geometry reconstruction term and a smoothness regularization term), which is sufficient to preserve mesh smoothness and element quality. Our experiments demonstrate that the proposed approach produces high-quality aortic valve surface meshes with improved smoothness and shape quality, while requiring fewer explicit regularization terms compared to the traditional methods. These results highlight that using structured quad meshes for the template and neural network training not only ensures mesh correspondence and quality but also simplifies the training process, thus enhancing the effectiveness and efficiency of aortic valve modeling.
Abstract:The strong zero-shot and long-context capabilities of recent Large Language Models (LLMs) have paved the way for highly effective re-ranking systems. Attention-based re-rankers leverage attention weights from transformer heads to produce relevance scores, but not all heads are created equally: many contribute noise and redundancy, thus limiting performance. To address this, we introduce CoRe heads, a small set of retrieval heads identified via a contrastive scoring metric that explicitly rewards high attention heads that correlate with relevant documents, while downplaying nodes with higher attention that correlate with irrelevant documents. This relative ranking criterion isolates the most discriminative heads for re-ranking and yields a state-of-the-art list-wise re-ranker. Extensive experiments with three LLMs show that aggregated signals from CoRe heads, constituting less than 1% of all heads, substantially improve re-ranking accuracy over strong baselines. We further find that CoRe heads are concentrated in middle layers, and pruning the computation of final 50% of model layers preserves accuracy while significantly reducing inference time and memory usage.
Abstract:The aorta is the body's largest arterial vessel, serving as the primary pathway for oxygenated blood within the systemic circulation. Aortic aneurysms consistently rank among the top twenty causes of mortality in the United States. Thoracic aortic aneurysm (TAA) arises from abnormal dilation of the thoracic aorta and remains a clinically significant disease, ranking as one of the leading causes of death in adults. A thoracic aortic aneurysm ruptures when the integrity of all aortic wall layers is compromised due to elevated blood pressure. Currently, three-dimensional computed tomography (3D CT) is considered the gold standard for diagnosing TAA. The geometric characteristics of the aorta, which can be quantified from medical imaging, and stresses on the aortic wall, which can be obtained by finite element analysis (FEA), are critical in evaluating the risk of rupture and dissection. Deep learning based image segmentation has emerged as a reliable method for extracting anatomical regions of interest from medical images. Voxel based segmentation masks of anatomical structures are typically converted into structured mesh representation to enable accurate simulation. Hexahedral meshes are commonly used in finite element simulations of the aorta due to their computational efficiency and superior simulation accuracy. Due to anatomical variability, patient specific modeling enables detailed assessment of individual anatomical and biomechanics behaviors, supporting precise simulations, accurate diagnoses, and personalized treatment strategies. Finite element (FE) simulations provide valuable insights into the biomechanical behaviors of tissues and organs in clinical studies. Developing accurate FE models represents a crucial initial step in establishing a patient-specific, biomechanically based framework for predicting the risk of TAA.




Abstract:This paper presents a summary of the VQualA 2025 Challenge on Visual Quality Comparison for Large Multimodal Models (LMMs), hosted as part of the ICCV 2025 Workshop on Visual Quality Assessment. The challenge aims to evaluate and enhance the ability of state-of-the-art LMMs to perform open-ended and detailed reasoning about visual quality differences across multiple images. To this end, the competition introduces a novel benchmark comprising thousands of coarse-to-fine grained visual quality comparison tasks, spanning single images, pairs, and multi-image groups. Each task requires models to provide accurate quality judgments. The competition emphasizes holistic evaluation protocols, including 2AFC-based binary preference and multi-choice questions (MCQs). Around 100 participants submitted entries, with five models demonstrating the emerging capabilities of instruction-tuned LMMs on quality assessment. This challenge marks a significant step toward open-domain visual quality reasoning and comparison and serves as a catalyst for future research on interpretable and human-aligned quality evaluation systems.




Abstract:Large Language Models (LLMs) have demonstrated remarkable progress in long-context understanding, yet they face significant challenges in high-quality long-form generation. Existing studies primarily suffer from two limitations: (1) A heavy reliance on scarce, high-quality long-form response data for supervised fine-tuning (SFT) or for pairwise preference reward in reinforcement learning (RL). (2) Focus on coarse-grained quality optimization dimensions, such as relevance, coherence, and helpfulness, overlooking the fine-grained specifics inherent to diverse long-form generation scenarios. To address this issue, we propose a framework using Adaptive Constraint-Enhanced reward for long-form generation Reinforcement Learning (ACE-RL). ACE-RL first automatically deconstructs each instruction into a set of fine-grained, adaptive constraint criteria by identifying its underlying intents and demands. Subsequently, we design a reward mechanism that quantifies the quality of long-form responses based on their satisfaction over corresponding constraints, converting subjective quality evaluation into constraint verification. Finally, we utilize reinforcement learning to guide models toward superior long-form generation capabilities. Experimental results demonstrate that our ACE-RL framework significantly outperforms existing SFT and RL baselines by 20.70% and 7.32% on WritingBench, and our top-performing model even surpasses proprietary systems like GPT-4o by 7.10%, providing a more effective training paradigm for LLMs to generate high-quality content across diverse long-form generation scenarios.




Abstract:Face videos accompanied by audio have become integral to our daily lives, while they often suffer from complex degradations. Most face video restoration methods neglect the intrinsic correlations between the visual and audio features, especially in mouth regions. A few audio-aided face video restoration methods have been proposed, but they only focus on compression artifact removal. In this paper, we propose a General Audio-assisted face Video restoration Network (GAVN) to address various types of streaming video distortions via identity and temporal complementary learning. Specifically, GAVN first captures inter-frame temporal features in the low-resolution space to restore frames coarsely and save computational cost. Then, GAVN extracts intra-frame identity features in the high-resolution space with the assistance of audio signals and face landmarks to restore more facial details. Finally, the reconstruction module integrates temporal features and identity features to generate high-quality face videos. Experimental results demonstrate that GAVN outperforms the existing state-of-the-art methods on face video compression artifact removal, deblurring, and super-resolution. Codes will be released upon publication.