University of California Riverside
Abstract:Spatial perception aims to estimate camera motion and scene structure from visual observations, a problem traditionally addressed through geometric modeling and physical consistency constraints. Recent learning-based methods have demonstrated strong representational capacity for geometric perception and are increasingly used to augment classical geometry-centric systems in practice. However, whether learning components should directly replace geometric estimation or instead serve as intermediate modules within such pipelines remains an open question. In this work, we address this gap and investigate an end-to-end modular framework for effective spatial reasoning, where learning proposes geometric hypotheses, while geometric algorithms dispose estimation decisions. In particular, we study this principle in the context of relative camera pose estimation on RGB-D sequences. Using VGGT as a representative learning model, we evaluate learning-based pose and depth proposals under varying motion magnitudes and scene dynamics, followed by a classical point-to-plane RGB-D ICP as the geometric backend. Our experiments on the TUM RGB-D benchmark reveal three consistent findings: (1) learning-based pose proposals alone are unreliable; (2) learning-proposed geometry, when improperly aligned with camera intrinsics, can degrade performance; and (3) when learning-proposed depth is geometrically aligned and followed by a geometric disposal stage, consistent improvements emerge in moderately challenging rigid settings. These results demonstrate that geometry is not merely a refinement component, but an essential arbiter that validates and absorbs learning-based geometric observations. Our study highlights the importance of modular, geometry-aware system design for robust spatial perception.
Abstract:Rapidly evolving AI exhibits increasingly strong autonomy and goal-directed capabilities, accompanied by derivative systemic risks that are more unpredictable, difficult to control, and potentially irreversible. However, current AI safety evaluation systems suffer from critical limitations such as restricted risk dimensions and failed frontier risk detection. The lagging safety benchmarks and alignment technologies can hardly address the complex challenges posed by cutting-edge AI models. To bridge this gap, we propose the "ForesightSafety Bench" AI Safety Evaluation Framework, beginning with 7 major Fundamental Safety pillars and progressively extends to advanced Embodied AI Safety, AI4Science Safety, Social and Environmental AI risks, Catastrophic and Existential Risks, as well as 8 critical industrial safety domains, forming a total of 94 refined risk dimensions. To date, the benchmark has accumulated tens of thousands of structured risk data points and assessment results, establishing a widely encompassing, hierarchically clear, and dynamically evolving AI safety evaluation framework. Based on this benchmark, we conduct systematic evaluation and in-depth analysis of over twenty mainstream advanced large models, identifying key risk patterns and their capability boundaries. The safety capability evaluation results reveals the widespread safety vulnerabilities of frontier AI across multiple pillars, particularly focusing on Risky Agentic Autonomy, AI4Science Safety, Embodied AI Safety, Social AI Safety and Catastrophic and Existential Risks. Our benchmark is released at https://github.com/Beijing-AISI/ForesightSafety-Bench. The project website is available at https://foresightsafety-bench.beijing-aisi.ac.cn/.
Abstract:Long-sequence streaming 3D reconstruction remains a significant open challenge. Existing autoregressive models often fail when processing long sequences. They typically anchor poses to the first frame, which leads to attention decay, scale drift, and extrapolation errors. We introduce LongStream, a novel gauge-decoupled streaming visual geometry model for metric-scale scene reconstruction across thousands of frames. Our approach is threefold. First, we discard the first-frame anchor and predict keyframe-relative poses. This reformulates long-range extrapolation into a constant-difficulty local task. Second, we introduce orthogonal scale learning. This method fully disentangles geometry from scale estimation to suppress drift. Finally, we solve Transformer cache issues such as attention-sink reliance and long-term KV-cache contamination. We propose cache-consistent training combined with periodic cache refresh. This approach suppresses attention degradation over ultra-long sequences and reduces the gap between training and inference. Experiments show LongStream achieves state-of-the-art performance. It delivers stable, metric-scale reconstruction over kilometer-scale sequences at 18 FPS. Project Page: https://3dagentworld.github.io/longstream/
Abstract:Key Information Extraction (KIE) from real-world documents remains challenging due to substantial variations in layout structures, visual quality, and task-specific information requirements. Recent Large Multimodal Models (LMMs) have shown promising potential for performing end-to-end KIE directly from document images. To enable a comprehensive and systematic evaluation across realistic and diverse application scenarios, we introduce UNIKIE-BENCH, a unified benchmark designed to rigorously evaluate the KIE capabilities of LMMs. UNIKIE-BENCH consists of two complementary tracks: a constrained-category KIE track with scenario-predefined schemas that reflect practical application needs, and an open-category KIE track that extracts any key information that is explicitly present in the document. Experiments on 15 state-of-the-art LMMs reveal substantial performance degradation under diverse schema definitions, long-tail key fields, and complex layouts, along with pronounced performance disparities across different document types and scenarios. These findings underscore persistent challenges in grounding accuracy and layout-aware reasoning for LMM-based KIE. All codes and datasets are available at https://github.com/NEUIR/UNIKIE-BENCH.
Abstract:Autoregressive (AR) architectures have achieved significant successes in LLMs, inspiring explorations for video generation. In LLMs, top-p/top-k sampling strategies work exceptionally well: language tokens have high semantic density and low redundancy, so a fixed size of token candidates already strikes a balance between semantic accuracy and generation diversity. In contrast, video tokens have low semantic density and high spatio-temporal redundancy. This mismatch makes static top-k/top-p strategies ineffective for video decoders: they either introduce unnecessary randomness for low-uncertainty regions (static backgrounds) or get stuck in early errors for high-uncertainty regions (foreground objects). Prediction errors will accumulate as more frames are generated and eventually severely degrade long-horizon quality. To address this, we propose Entropy-Guided k-Guard (ENkG) sampling, a simple yet effective strategy that adapts sampling to token-wise dispersion, quantified by the entropy of each token's predicted distribution. ENkG uses adaptive token candidate sizes: for low-entropy regions, it employs fewer candidates to suppress redundant noise and preserve structural integrity; for high-entropy regions, it uses more candidates to mitigate error compounding. ENkG is model-agnostic, training-free, and adds negligible overhead. Experiments demonstrate consistent improvements in perceptual quality and structural stability compared to static top-k/top-p strategies.
Abstract:Whether Large Language Models (LLMs) truly possess human-like Theory of Mind (ToM) capabilities has garnered increasing attention. However, existing benchmarks remain largely restricted to narrow paradigms like false belief tasks, failing to capture the full spectrum of human cognitive mechanisms. We introduce CogToM, a comprehensive, theoretically grounded benchmark comprising over 8000 bilingual instances across 46 paradigms, validated by 49 human annotator.A systematic evaluation of 22 representative models, including frontier models like GPT-5.1 and Qwen3-Max, reveals significant performance heterogeneities and highlights persistent bottlenecks in specific dimensions. Further analysis based on human cognitive patterns suggests potential divergences between LLM and human cognitive structures. CogToM offers a robust instrument and perspective for investigating the evolving cognitive boundaries of LLMs.
Abstract:All-in-One Image Restoration (AiOIR) has advanced significantly, offering promising solutions for complex real-world degradations. However, most existing approaches rely heavily on degradation-specific representations, often resulting in oversmoothing and artifacts. To address this, we propose ClearAIR, a novel AiOIR framework inspired by Human Visual Perception (HVP) and designed with a hierarchical, coarse-to-fine restoration strategy. First, leveraging the global priority of early HVP, we employ a Multimodal Large Language Model (MLLM)-based Image Quality Assessment (IQA) model for overall evaluation. Unlike conventional IQA, our method integrates cross-modal understanding to more accurately characterize complex, composite degradations. Building upon this overall assessment, we then introduce a region awareness and task recognition pipeline. A semantic cross-attention, leveraging semantic guidance unit, first produces coarse semantic prompts. Guided by this regional context, a degradation-aware module implicitly captures region-specific degradation characteristics, enabling more precise local restoration. Finally, to recover fine details, we propose an internal clue reuse mechanism. It operates in a self-supervised manner to mine and leverage the intrinsic information of the image itself, substantially enhancing detail restoration. Experimental results show that ClearAIR achieves superior performance across diverse synthetic and real-world datasets.
Abstract:Spiking Neural Networks (SNNs) utilize spike-based activations to mimic the brain's energy-efficient information processing. However, the binary and discontinuous nature of spike activations causes vanishing gradients, making adversarial robustness evaluation via gradient descent unreliable. While improved surrogate gradient methods have been proposed, their effectiveness under strong adversarial attacks remains unclear. We propose a more reliable framework for evaluating SNN adversarial robustness. We theoretically analyze the degree of gradient vanishing in surrogate gradients and introduce the Adaptive Sharpness Surrogate Gradient (ASSG), which adaptively evolves the shape of the surrogate function according to the input distribution during attack iterations, thereby enhancing gradient accuracy while mitigating gradient vanishing. In addition, we design an adversarial attack with adaptive step size under the $L_\infty$ constraint-Stable Adaptive Projected Gradient Descent (SA-PGD), achieving faster and more stable convergence under imprecise gradients. Extensive experiments show that our approach substantially increases attack success rates across diverse adversarial training schemes, SNN architectures and neuron models, providing a more generalized and reliable evaluation of SNN adversarial robustness. The experimental results further reveal that the robustness of current SNNs has been significantly overestimated and highlighting the need for more dependable adversarial training methods.
Abstract:We study how generative artificial intelligence (AI) transforms the work of financial analysts. Using the 2023 launch of FactSet's AI platform as a natural experiment, we find that adoption produces markedly richer and more comprehensive reports -- featuring 40% more distinct information sources, 34% broader topical coverage, and 25% greater use of advanced analytical methods -- while also improving timeliness. However, forecast errors rise by 59% as AI-assisted reports convey a more balanced mix of positive and negative information that is harder to synthesize, particularly for analysts facing heavier cognitive demands. Placebo tests using other data vendors confirm that these effects are unique to FactSet's AI integration. Overall, our findings reveal both the productivity gains and cognitive limits of generative AI in financial information production.




Abstract:Ultrasound image segmentation is pivotal for clinical diagnosis, yet challenged by speckle noise and imaging artifacts. Recently, DINOv3 has shown remarkable promise in medical image segmentation with its powerful representation capabilities. However, DINOv3, pre-trained on natural images, lacks sensitivity to ultrasound-specific boundary degradation. To address this limitation, we propose FreqDINO, a frequency-guided segmentation framework that enhances boundary perception and structural consistency. Specifically, we devise a Multi-scale Frequency Extraction and Alignment (MFEA) strategy to separate low-frequency structures and multi-scale high-frequency boundary details, and align them via learnable attention. We also introduce a Frequency-Guided Boundary Refinement (FGBR) module that extracts boundary prototypes from high-frequency components and refines spatial features. Furthermore, we design a Multi-task Boundary-Guided Decoder (MBGD) to ensure spatial coherence between boundary and semantic predictions. Extensive experiments demonstrate that FreqDINO surpasses state-of-the-art methods with superior achieves remarkable generalization capability. The code is at https://github.com/MingLang-FD/FreqDINO.