Abstract:Recent advances in large language models (LLMs) have inspired new paradigms for document reranking. While this paradigm better exploits the reasoning and contextual understanding capabilities of LLMs, most existing LLM-based rerankers rely on autoregressive generation, which limits their efficiency and flexibility. In particular, token-by-token decoding incurs high latency, while the fixed left-to-right generation order causes early prediction errors to propagate and is difficult to revise. To address these limitations, we explore the use of diffusion language models (dLLMs) for document reranking and propose DiffuRank, a reranking framework built upon dLLMs. Unlike autoregressive models, dLLMs support more flexible decoding and generation processes that are not constrained to a left-to-right order, and enable parallel decoding, which may lead to improved efficiency and controllability. Specifically, we investigate three reranking strategies based on dLLMs: (1) a pointwise approach that uses dLLMs to estimate the relevance of each query-document pair; (2) a logit-based listwise approach that prompts dLLMs to jointly assess the relevance of multiple documents and derives ranking lists directly from model logits; and (3) a permutation-based listwise approach that adapts the canonical decoding process of dLLMs to the reranking tasks. For each approach, we design corresponding training methods to fully exploit the advantages of dLLMs. We evaluate both zero-shot and fine-tuned reranking performance on multiple benchmarks. Experimental results show that dLLMs achieve performance comparable to, and in some cases exceeding, that of autoregressive LLMs with similar model sizes. These findings demonstrate the promise of diffusion-based language models as a compelling alternative to autoregressive architectures for document reranking.
Abstract:Large language models (LLMs) and multimodal LLMs are typically safety-aligned before release to prevent harmful content generation. However, recent studies show that safety behaviors are concentrated in a small subset of parameters, making alignment brittle and easily bypassed through neuron-level attacks. Moreover, most existing alignment methods operate at the behavioral level, offering limited control over the model's internal safety mechanisms. In this work, we propose SafeNeuron, a neuron-level safety alignment framework that improves robustness by redistributing safety representations across the network. SafeNeuron first identifies safety-related neurons, then freezes these neurons during preference optimization to prevent reliance on sparse safety pathways and force the model to construct redundant safety representations. Extensive experiments across models and modalities demonstrate that SafeNeuron significantly improves robustness against neuron pruning attacks, reduces the risk of open-source models being repurposed as red-team generators, and preserves general capabilities. Furthermore, our layer-wise analysis reveals that safety behaviors are governed by stable and shared internal representations. Overall, SafeNeuron provides an interpretable and robust perspective for model alignment.
Abstract:Aligning large language models (LLMs) with human values has become increasingly important as their influence on human behavior and decision-making expands. However, existing steering-based alignment methods suffer from limited controllability: steering a target value often unintentionally activates other, non-target values. To characterize this limitation, we introduce value leakage, a diagnostic notion that captures the unintended activation of non-target values during value steering, along with a normalized leakage metric grounded in Schwartz's value theory. In light of this analysis, we propose NeVA, a neuron-level editing framework for controllable value alignment in LLMs. NeVA identifies sparse, value-relevant neurons and performs inference-time activation editing, enabling fine-grained control without parameter updates or retraining. Experiments show that NeVA achieves stronger target value alignment while incurring smaller performance degradation on general capability. Moreover, NeVA significantly reduces the average leakage, with residual effects largely confined to semantically related value classes. Overall, NeVA offers a more controllable and interpretable mechanism for value alignment.
Abstract:The integration of reinforcement learning (RL) into large language models (LLMs) has opened new opportunities for recommender systems by eliciting reasoning and improving user preference modeling. However, RL-based LLM recommendation faces significant efficiency challenges, making full-data training costly. Existing data selection methods define sample value based on learnability or representativeness, yet their loss- or gradient-driven or dataset coverage-driven criteria often misalign with RL learning dynamics, resulting in suboptimal performance. To address this, we propose MiniRec, a data selection framework tailored for RL-based LLM recommendation. MiniRec evaluates sample learnability using key RL signals -- rewards -- pruning samples that are too easy (too high reward) or too difficult (consistently low reward). It assesses representativeness by aligning sample gradients with the approximated "ideal" global RL optimization trajectory, selecting samples that mainly drive model updates, and it also enforces diversity to reduce redundancy. Combined with a curriculum learning strategy from easy to hard samples, MiniRec significantly reduces training cost while largely preserving performance. Extensive experiments demonstrate MiniRec's effectiveness, highlighting the importance of reward-aligned, trajectory-informed data selection in RL-based LLM recommendation.
Abstract:Alignment of Large Language Models (LLMs) aims to align outputs with human preferences, and personalized alignment further adapts models to individual users. This relies on personalized reward models that capture user-specific preferences and automatically provide individualized feedback. However, developing these models faces two critical challenges: the scarcity of feedback from individual users and the need for efficient adaptation to unseen users. We argue that addressing these constraints requires a paradigm shift from fitting data to learn user preferences to learn the process of preference adaptation. To realize this, we propose Meta Reward Modeling (MRM), which reformulates personalized reward modeling as a meta-learning problem. Specifically, we represent each user's reward model as a weighted combination of base reward functions, and optimize the initialization of these weights using a Model-Agnostic Meta-Learning (MAML)-style framework to support fast adaptation under limited feedback. To ensure robustness, we introduce the Robust Personalization Objective (RPO), which places greater emphasis on hard-to-learn users during meta optimization. Extensive experiments on personalized preference datasets validate that MRM enhances few-shot personalization, improves user robustness, and consistently outperforms baselines.
Abstract:Large Language Models (LLMs) are increasingly deployed in human-centric applications, yet they often fail to provide substantive emotional support. While Reinforcement Learning (RL) has been utilized to enhance empathy of LLMs, existing reward models typically evaluate empathy from a single perspective, overlooking the inherently bidirectional interaction nature of empathy between the supporter and seeker as defined by Empathy Cycle theory. To address this limitation, we propose Psychology-grounded Empathetic Reward Modeling (PERM). PERM operationalizes empathy evaluation through a bidirectional decomposition: 1) Supporter perspective, assessing internal resonation and communicative expression; 2) Seeker perspective, evaluating emotional reception. Additionally, it incorporates a bystander perspective to monitor overall interaction quality. Extensive experiments on a widely-used emotional intelligence benchmark and an industrial daily conversation dataset demonstrate that PERM outperforms state-of-the-art baselines by over 10\%. Furthermore, a blinded user study reveals a 70\% preference for our approach, highlighting its efficacy in generating more empathetic responses. Our code, dataset, and models are available at https://github.com/ZhengWwwq/PERM.
Abstract:As Large Language Models (LLMs) increasingly shape online content, removing targeted information from well-trained LLMs (also known as LLM unlearning) has become critical for web governance. A key challenge lies in sample-wise imbalance within the forget set: different samples exhibit widely varying unlearning difficulty, leading to asynchronous forgetting where some knowledge remains insufficiently erased while others become over-forgotten. To address this, we propose BalDRO, a novel and efficient framework for balanced LLM unlearning. BalDRO formulates unlearning as a min-sup process: an inner step identifies a worst-case data distribution that emphasizes hard-to-unlearn samples, while an outer step updates model parameters under this distribution. We instantiate BalDRO via two efficient variants: BalDRO-G, a discrete GroupDRO-based approximation focusing on high-loss subsets, and BalDRO-DV, a continuous Donsker-Varadhan dual method enabling smooth adaptive weighting within standard training pipelines. Experiments on TOFU and MUSE show that BalDRO significantly improves both forgetting quality and model utility over existing methods, and we release code for reproducibility.




Abstract:Scaling recommendation models into large recommendation models has become one of the most widely discussed topics. Recent efforts focus on components beyond the scaling embedding dimension, as it is believed that scaling embedding may lead to performance degradation. Although there have been some initial observations on embedding, the root cause of their non-scalability remains unclear. Moreover, whether performance degradation occurs across different types of models and datasets is still an unexplored area. Regarding the effect of embedding dimensions on performance, we conduct large-scale experiments across 10 datasets with varying sparsity levels and scales, using 4 representative classical architectures. We surprisingly observe two novel phenomenon: double-peak and logarithmic. For the former, as the embedding dimension increases, performance first improves, then declines, rises again, and eventually drops. For the latter, it exhibits a perfect logarithmic curve. Our contributions are threefold. First, we discover two novel phenomena when scaling collaborative filtering models. Second, we gain an understanding of the underlying causes of the double-peak phenomenon. Lastly, we theoretically analyze the noise robustness of collaborative filtering models, with results matching empirical observations.
Abstract:Large language models (LLMs) are increasingly integrated into users' daily lives, leading to a growing demand for personalized outputs. Previous work focuses on leveraging a user's own history, overlooking inter-user differences that are crucial for effective personalization. While recent work has attempted to model such differences, the reliance on language-based prompts often hampers the effective extraction of meaningful distinctions. To address these issues, we propose Difference-aware Embedding-based Personalization (DEP), a framework that models inter-user differences in the latent space instead of relying on language prompts. DEP constructs soft prompts by contrasting a user's embedding with those of peers who engaged with similar content, highlighting relative behavioral signals. A sparse autoencoder then filters and compresses both user-specific and difference-aware embeddings, preserving only task-relevant features before injecting them into a frozen LLM. Experiments on personalized review generation show that DEP consistently outperforms baseline methods across multiple metrics. Our code is available at https://github.com/SnowCharmQ/DEP.
Abstract:Large Language Models (LLMs) have shown strong potential for recommendation by framing item prediction as a token-by-token language generation task. However, existing methods treat all item tokens equally, simply pursuing likelihood maximization during both optimization and decoding. This overlooks crucial token-level differences in decisiveness-many tokens contribute little to item discrimination yet can dominate optimization or decoding. To quantify token decisiveness, we propose a novel perspective that models item generation as a decision process, measuring token decisiveness by the Information Gain (IG) each token provides in reducing uncertainty about the generated item. Our empirical analysis reveals that most tokens have low IG but often correspond to high logits, disproportionately influencing training loss and decoding, which may impair model performance. Building on these insights, we introduce an Information Gain-based Decisiveness-aware Token handling (IGD) strategy that integrates token decisiveness into both tuning and decoding. Specifically, IGD downweights low-IG tokens during tuning and rebalances decoding to emphasize tokens with high IG. In this way, IGD moves beyond pure likelihood maximization, effectively prioritizing high-decisiveness tokens. Extensive experiments on four benchmark datasets with two LLM backbones demonstrate that IGD consistently improves recommendation accuracy, achieving significant gains on widely used ranking metrics compared to strong baselines.