Abstract:Recent advancements in recommender systems have focused on leveraging Large Language Models (LLMs) to improve user preference modeling, yielding promising outcomes. However, current LLM-based approaches struggle to fully leverage user behavior sequences, resulting in suboptimal preference modeling for personalized recommendations. In this study, we propose a novel Counterfactual Fine-Tuning (CFT) method to address this issue by explicitly emphasizing the role of behavior sequences when generating recommendations. Specifically, we employ counterfactual reasoning to identify the causal effects of behavior sequences on model output and introduce a task that directly fits the ground-truth labels based on these effects, achieving the goal of explicit emphasis. Additionally, we develop a token-level weighting mechanism to adjust the emphasis strength for different item tokens, reflecting the diminishing influence of behavior sequences from earlier to later tokens during predicting an item. Extensive experiments on real-world datasets demonstrate that CFT effectively improves behavior sequence modeling. Our codes are available at https://github.com/itsmeyjt/CFT.
Abstract:Frequently updating Large Language Model (LLM)-based recommender systems to adapt to new user interests -- as done for traditional ones -- is impractical due to high training costs, even with acceleration methods. This work explores adapting to dynamic user interests without any model updates by leveraging In-Context Learning (ICL), which allows LLMs to learn new tasks from few-shot examples provided in the input. Using new-interest examples as the ICL few-shot examples, LLMs may learn real-time interest directly, avoiding the need for model updates. However, existing LLM-based recommenders often lose the in-context learning ability during recommendation tuning, while the original LLM's in-context learning lacks recommendation-specific focus. To address this, we propose RecICL, which customizes recommendation-specific in-context learning for real-time recommendations. RecICL organizes training examples in an in-context learning format, ensuring that in-context learning ability is preserved and aligned with the recommendation task during tuning. Extensive experiments demonstrate RecICL's effectiveness in delivering real-time recommendations without requiring model updates. Our code is available at https://github.com/ym689/rec_icl.
Abstract:Agents powered by large language models have shown remarkable reasoning and execution capabilities, attracting researchers to explore their potential in the recommendation domain. Previous studies have primarily focused on enhancing the capabilities of either recommendation agents or user agents independently, but have not considered the interaction and collaboration between recommendation agents and user agents. To address this gap, we propose a novel framework named FLOW, which achieves collaboration between the recommendation agent and the user agent by introducing a feedback loop. Specifically, the recommendation agent refines its understanding of the user's preferences by analyzing the user agent's feedback on previously suggested items, while the user agent leverages suggested items to uncover deeper insights into the user's latent interests. This iterative refinement process enhances the reasoning capabilities of both the recommendation agent and the user agent, enabling more precise recommendations and a more accurate simulation of user behavior. To demonstrate the effectiveness of the feedback loop, we evaluate both recommendation performance and user simulation performance on three widely used recommendation domain datasets. The experimental results indicate that the feedback loop can simultaneously improve the performance of both the recommendation and user agents.
Abstract:Recent work has improved recommendation models remarkably by equipping them with debiasing methods. Due to the unavailability of fully-exposed datasets, most existing approaches resort to randomly-exposed datasets as a proxy for evaluating debiased models, employing traditional evaluation scheme to represent the recommendation performance. However, in this study, we reveal that traditional evaluation scheme is not suitable for randomly-exposed datasets, leading to inconsistency between the Recall performance obtained using randomly-exposed datasets and that obtained using fully-exposed datasets. Such inconsistency indicates the potential unreliability of experiment conclusions on previous debiasing techniques and calls for unbiased Recall evaluation using randomly-exposed datasets. To bridge the gap, we propose the Unbiased Recall Evaluation (URE) scheme, which adjusts the utilization of randomly-exposed datasets to unbiasedly estimate the true Recall performance on fully-exposed datasets. We provide theoretical evidence to demonstrate the rationality of URE and perform extensive experiments on real-world datasets to validate its soundness.
Abstract:Adapting Large Language Models (LLMs) for recommendation requires careful consideration of the decoding process, given the inherent differences between generating items and natural language. Existing approaches often directly apply LLMs' original decoding methods. However, we find these methods encounter significant challenges: 1) amplification bias -- where standard length normalization inflates scores for items containing tokens with generation probabilities close to 1 (termed ghost tokens), and 2) homogeneity issue -- generating multiple similar or repetitive items for a user. To tackle these challenges, we introduce a new decoding approach named Debiasing-Diversifying Decoding (D3). D3 disables length normalization for ghost tokens to alleviate amplification bias, and it incorporates a text-free assistant model to encourage tokens less frequently generated by LLMs for counteracting recommendation homogeneity. Extensive experiments on real-world datasets demonstrate the method's effectiveness in enhancing accuracy and diversity.
Abstract:Large language models have seen widespread adoption in math problem-solving. However, in geometry problems that usually require visual aids for better understanding, even the most advanced multi-modal models currently still face challenges in effectively using image information. High-quality data is crucial for enhancing the geometric capabilities of multi-modal models, yet existing open-source datasets and related efforts are either too challenging for direct model learning or suffer from misalignment between text and images. To overcome this issue, we introduce a novel pipeline that leverages GPT-4 and GPT-4V to generate relatively basic geometry problems with aligned text and images, facilitating model learning. We have produced a dataset of 4.9K geometry problems and combined it with 19K open-source data to form our GeoGPT4V dataset. Experimental results demonstrate that the GeoGPT4V dataset significantly improves the geometry performance of various models on the MathVista and MathVision benchmarks. The code is available at https://github.com/Lanyu0303/GeoGPT4V_Project
Abstract:Harnessing Large Language Models (LLMs) for generative recommendation has garnered significant attention due to LLMs' powerful capacities such as rich world knowledge and reasoning. However, a critical challenge lies in transforming recommendation data into the language space of LLMs through effective item tokenization. Existing approaches, such as ID identifiers, textual identifiers, and codebook-based identifiers, exhibit limitations in encoding semantic information, incorporating collaborative signals, or handling code assignment bias. To address these shortcomings, we propose LETTER (a LEarnable Tokenizer for generaTivE Recommendation), designed to meet the key criteria of identifiers by integrating hierarchical semantics, collaborative signals, and code assignment diversity. LETTER integrates Residual Quantized VAE for semantic regularization, a contrastive alignment loss for collaborative regularization, and a diversity loss to mitigate code assignment bias. We instantiate LETTER within two generative recommender models and introduce a ranking-guided generation loss to enhance their ranking ability. Extensive experiments across three datasets demonstrate the superiority of LETTER in item tokenization, thereby advancing the state-of-the-art in the field of generative recommendation.
Abstract:As recommender systems are indispensable in various domains such as job searching and e-commerce, providing equitable recommendations to users with different sensitive attributes becomes an imperative requirement. Prior approaches for enhancing fairness in recommender systems presume the availability of all sensitive attributes, which can be difficult to obtain due to privacy concerns or inadequate means of capturing these attributes. In practice, the efficacy of these approaches is limited, pushing us to investigate ways of promoting fairness with limited sensitive attribute information. Toward this goal, it is important to reconstruct missing sensitive attributes. Nevertheless, reconstruction errors are inevitable due to the complexity of real-world sensitive attribute reconstruction problems and legal regulations. Thus, we pursue fair learning methods that are robust to reconstruction errors. To this end, we propose Distributionally Robust Fair Optimization (DRFO), which minimizes the worst-case unfairness over all potential probability distributions of missing sensitive attributes instead of the reconstructed one to account for the impact of the reconstruction errors. We provide theoretical and empirical evidence to demonstrate that our method can effectively ensure fairness in recommender systems when only limited sensitive attributes are accessible.
Abstract:The new kind of Agent-oriented information system, exemplified by GPTs, urges us to inspect the information system infrastructure to support Agent-level information processing and to adapt to the characteristics of Large Language Model (LLM)-based Agents, such as interactivity. In this work, we envisage the prospect of the recommender system on LLM-based Agent platforms and introduce a novel recommendation paradigm called Rec4Agentverse, comprised of Agent Items and Agent Recommender. Rec4Agentverse emphasizes the collaboration between Agent Items and Agent Recommender, thereby promoting personalized information services and enhancing the exchange of information beyond the traditional user-recommender feedback loop. Additionally, we prospect the evolution of Rec4Agentverse and conceptualize it into three stages based on the enhancement of the interaction and information exchange among Agent Items, Agent Recommender, and the user. A preliminary study involving several cases of Rec4Agentverse validates its significant potential for application. Lastly, we discuss potential issues and promising directions for future research.
Abstract:The evolution of Outfit Recommendation (OR) in the realm of fashion has progressed through two distinct phases: Pre-defined Outfit Recommendation and Personalized Outfit Composition. Despite these advancements, both phases face limitations imposed by existing fashion products, hindering their effectiveness in meeting users' diverse fashion needs. The emergence of AI-generated content has paved the way for OR to overcome these constraints, demonstrating the potential for personalized outfit generation. In pursuit of this, we introduce an innovative task named Generative Outfit Recommendation (GOR), with the goal of synthesizing a set of fashion images and assembling them to form visually harmonious outfits customized to individual users. The primary objectives of GOR revolve around achieving high fidelity, compatibility, and personalization of the generated outfits. To accomplish these, we propose DiFashion, a generative outfit recommender model that harnesses exceptional diffusion models for the simultaneous generation of multiple fashion images. To ensure the fulfillment of these objectives, three types of conditions are designed to guide the parallel generation process and Classifier-Free-Guidance are employed to enhance the alignment between generated images and conditions. DiFashion is applied to both personalized Fill-In-The-Blank and GOR tasks, and extensive experiments are conducted on the iFashion and Polyvore-U datasets. The results of quantitative and human-involved qualitative evaluations highlight the superiority of DiFashion over competitive baselines.