In this paper, a novel clustered FL framework that enables distributed edge devices with non-IID data to independently form several clusters in a distributed manner and implement FL training within each cluster is proposed. In particular, our designed clustered FL algorithm must overcome two challenges associated with FL training. First, the server has limited FL training information (i.e., the parameter server can only obtain the FL model information of each device) and limited computational power for finding the differences among a large amount of devices. Second, each device does not have the data information of other devices for device clustering and can only use global FL model parameters received from the server and its data information to determine its cluster identity, which will increase the difficulty of device clustering. To overcome these two challenges, we propose a joint gradient and loss based distributed clustering method in which each device determines its cluster identity considering the gradient similarity and training loss. The proposed clustering method not only considers how a local FL model of one device contributes to each cluster but also the direction of gradient descent thus improving clustering speed. By delegating clustering decisions to edge devices, each device can fully leverage its private data information to determine its own cluster identity, thereby reducing clustering overhead and improving overall clustering performance. Simulation results demonstrate that our proposed clustered FL algorithm can reduce clustering iterations by up to 99% compared to the existing baseline.
Semantic communication (SemCom) is an emerging technology that extracts useful meaning from data and sends only relevant semantic information. Thus, it has the great potential to improve the spectrum efficiency of conventional wireless systems with bit transmissions, especially in low signal-to-noise ratio (SNR) and small bandwidth regions. However, the existing works have mostly overlooked the constraints of mobile devices, which may not have sufficient capabilities to implement resource-demanding semantic encoder/decoder based on deep learning. To address this issue, we propose in this paper a new semantic relay (SemRelay), which is equipped with a semantic receiver to assist multiuser text transmissions. Specifically, the SemRelay decodes semantic information from a base station and forwards it to the users using conventional bit transmission, hence effectively improving text transmission efficiency. To study the multiuser resource allocation, we formulate an optimization problem to maximize the multiuser weighted sum-rate by jointly designing the SemRelay transmit power allocation and system bandwidth allocation. Although this problem is non-convex and hence challenging to solve, we propose an efficient algorithm to obtain its high-quality suboptimal solution by using the block coordinate descent method. Last, numerical results show the effectiveness of the proposed algorithm as well as superior performance of the proposed SemRelay over the conventional decode-and-forward (DF) relay, especially in small bandwidth region.
In the sixth generation (6G) era, intelligent machine network (IMN) applications, such as intelligent transportation, require collaborative machines with communication, sensing, and computation (CSC) capabilities. This article proposes an integrated communication, sensing, and computation (ICSAC) framework for 6G to achieve the reciprocity among CSC functions to enhance the reliability and latency of communication, accuracy and timeliness of sensing information acquisition, and privacy and security of computing to realize the IMN applications. Specifically, the sensing and communication functions can merge into unified platforms using the same transmit signals, and the acquired real-time sensing information can be exploited as prior information for intelligent algorithms to enhance the performance of communication networks. This is called the computing-empowered integrated sensing and communications (ISAC) reciprocity. Such reciprocity can further improve the performance of distributed computation with the assistance of networked sensing capability, which is named the sensing-empowered integrated communications and computation (ICAC) reciprocity. The above ISAC and ICAC reciprocities can enhance each other iteratively and finally lead to the ICSAC reciprocity. To achieve these reciprocities, we explore the potential enabling technologies for the ICSAC framework. Finally, we present the evaluation results of crucial enabling technologies to show the feasibility of the ICSAC framework.
Recent research efforts on semantic communication have mostly considered accuracy as a main problem for optimizing goal-oriented communication systems. However, these approaches introduce a paradox: the accuracy of artificial intelligence (AI) tasks should naturally emerge through training rather than being dictated by network constraints. Acknowledging this dilemma, this work introduces an innovative approach that leverages the rate-distortion theory to analyze distortions induced by communication and semantic compression, thereby analyzing the learning process. Specifically, we examine the distribution shift between the original data and the distorted data, thus assessing its impact on the AI model's performance. Founding upon this analysis, we can preemptively estimate the empirical accuracy of AI tasks, making the goal-oriented semantic communication problem feasible. To achieve this objective, we present the theoretical foundation of our approach, accompanied by simulations and experiments that demonstrate its effectiveness. The experimental results indicate that our proposed method enables accurate AI task performance while adhering to network constraints, establishing it as a valuable contribution to the field of signal processing. Furthermore, this work advances research in goal-oriented semantic communication and highlights the significance of data-driven approaches in optimizing the performance of intelligent systems.
In this paper, we propose a semantic-aware joint communication and computation resource allocation framework for MEC systems. In the considered system, random tasks arrive at each terminal device (TD), which needs to be computed locally or offloaded to the MEC server. To further release the transmission burden, each TD sends the small-size extracted semantic information of tasks to the server instead of the original large-size raw data. An optimization problem of joint semanticaware division factor, communication and computation resource management is formulated. The problem aims to minimize the energy consumption of the whole system, while satisfying longterm delay and processing rate constraints. To solve this problem, an online low-complexity algorithm is proposed. In particular, Lyapunov optimization is utilized to decompose the original coupled long-term problem into a series of decoupled deterministic problems without requiring the realizations of future task arrivals and channel gains. Then, the block coordinate descent method and successive convex approximation algorithm are adopted to solve the current time slot deterministic problem by observing the current system states. Moreover, the closed-form optimal solution of each optimization variable is provided. Simulation results show that the proposed algorithm yields up to 41.8% energy reduction compared to its counterpart without semantic-aware allocation.
In this paper, a semantic-aware joint communication and computation resource allocation framework is proposed for mobile edge computing (MEC) systems. In the considered system, each terminal device (TD) has a computation task, which needs to be executed by offloading to the MEC server. To further decrease the transmission burden, each TD sends the small-size extracted semantic information of tasks to the server instead of the large-size raw data. An optimization problem of joint semantic-aware division factor, communication and computation resource management is formulated. The problem aims to minimize the maximum execution delay of all TDs while satisfying energy consumption constraints. The original non-convex problem is transformed into a convex one based on the geometric programming and the optimal solution is obtained by the alternating optimization algorithm. Moreover, the closed-form optimal solution of the semantic extraction factor is derived. Simulation results show that the proposed algorithm yields up to 37.10% delay reduction compared with the benchmark algorithm without semantic-aware allocation. Furthermore, small semantic extraction factors are preferred in the case of large task sizes and poor channel conditions.
In this paper, the problem of semantic information extraction for resource constrained text data transmission is studied. In the considered model, a sequence of text data need to be transmitted within a communication resource-constrained network, which only allows limited data transmission. Thus, at the transmitter, the original text data is extracted with natural language processing techniques. Then, the extracted semantic information is captured in a knowledge graph. An additional probability dimension is introduced in this graph to capture the importance of each information. This semantic information extraction problem is posed as an optimization framework whose goal is to extract most important semantic information for transmission. To find an optimal solution for this problem, a Floyd's algorithm based solution coupled with an efficient sorting mechanism is proposed. Numerical results testify the effectiveness of the proposed algorithm with regards to two novel performance metrics including semantic uncertainty and semantic similarity.
Recently, big artificial intelligence (AI) models represented by chatGPT have brought an incredible revolution. With the pre-trained big AI model (BAIM) in certain fields, numerous downstream tasks can be accomplished with only few-shot or even zero-shot learning and exhibit state-of-the-art performances. As widely envisioned, the big AI models are to rapidly penetrate into major intelligent services and applications, and are able to run at low unit cost and high flexibility. In 6G wireless networks, to fully enable intelligent communication, sensing and computing, apart from providing other intelligent wireless services and applications, it is of vital importance to design and deploy certain wireless BAIMs (wBAIMs). However, there still lacks investigation on architecture design and system evaluation for wBAIM. In this paper, we provide a comprehensive discussion as well as some in-depth prospects on the demand, design and deployment aspects of the wBAIM. We opine that wBAIM will be a recipe of the 6G wireless networks to build high-efficient, sustainable, versatile, and extensible wireless intelligence for numerous promising visions. Then, we present the core characteristics and principles to guide the design of wBAIMs, and discuss the key aspects of developing wBAIMs through identifying the differences between the existing BAIMs and the emerging wBAIMs. Finally, related research directions and potential solutions are outlined.
Over-the-air computation (AirComp) has recently been identified as a prominent technique to enhance communication efficiency of wireless federated learning (FL). This letter investigates the impact of channel state information (CSI) uncertainty at the transmitter on an AirComp enabled FL (AirFL) system with the truncated channel inversion strategy. To characterize the performance of the AirFL system, the weight divergence with respect to the ideal aggregation is analytically derived to evaluate learning performance loss. We explicitly reveal that the weight divergence deteriorates as $\mathcal{O}(1/\rho^2)$ as the level of channel estimation accuracy $\rho$ vanishes, and also has a decay rate of $\mathcal{O}(1/K^2)$ with the increasing number of participating devices, $K$. Building upon our analytical results, we formulate the channel truncation threshold optimization problem to adapt to different $\rho$, which can be solved optimally. Numerical results verify the analytical results and show that a lower truncation threshold is preferred with more accurate CSI.
For vehicular metaverses, one of the ultimate user-centric goals is to optimize the immersive experience and Quality of Service (QoS) for users on board. Semantic Communication (SemCom) has been introduced as a revolutionary paradigm that significantly eases communication resource pressure for vehicular metaverse applications to achieve this goal. SemCom enables high-quality and ultra-efficient vehicular communication, even with explosively increasing data traffic among vehicles. In this article, we propose a hierarchical SemCom-enabled vehicular metaverses framework consisting of the global metaverse, local metaverses, SemCom module, and resource pool. The global and local metaverses are brand-new concepts from the metaverse's distribution standpoint. Considering the QoS of users, this article explores the potential security vulnerabilities of the proposed framework. To that purpose, this study highlights a specific security risk to the framework's SemCom module and offers a viable defense solution, so encouraging community researchers to focus more on vehicular metaverse security. Finally, we provide an overview of the open issues of secure SemCom in the vehicular metaverses, notably pointing out potential future research directions.