Sherman
Abstract:Task-oriented semantic communication enhances transmission efficiency by conveying semantic information rather than exact messages. Deep learning (DL)-based semantic communication can effectively cultivate the essential semantic knowledge for semantic extraction, transmission, and interpretation by leveraging massive labeled samples for downstream task training. In this paper, we propose a self-supervised learning-based semantic communication framework (SLSCom) to enhance task inference performance, particularly in scenarios with limited access to labeled samples. Specifically, we develop a task-relevant semantic encoder using unlabeled samples, which can be collected by devices in real-world edge networks. To facilitate task-relevant semantic extraction, we introduce self-supervision for learning contrastive features and formulate the information bottleneck (IB) problem to balance the tradeoff between the informativeness of the extracted features and task inference performance. Given the computational challenges of the IB problem, we devise a practical and effective solution by employing self-supervised classification and reconstruction pretext tasks. We further propose efficient joint training methods to enhance end-to-end inference accuracy over wireless channels, even with few labeled samples. We evaluate the proposed framework on image classification tasks over multipath wireless channels. Extensive simulation results demonstrate that SLSCom significantly outperforms conventional digital coding methods and existing DL-based approaches across varying labeled data set sizes and SNR conditions, even when the unlabeled samples are irrelevant to the downstream tasks.
Abstract:Many studies focus on data annotation techniques for training effective PRMs. However, current methods encounter a significant issue when applied to long CoT reasoning processes: they tend to focus solely on the first incorrect step and all preceding steps, assuming that all subsequent steps are incorrect. These methods overlook the unique self-correction and reflection mechanisms inherent in long CoT, where correct reasoning steps may still occur after initial reasoning mistakes. To address this issue, we propose a novel data annotation method for PRMs specifically designed to score the long CoT reasoning process. Given that under the reflection pattern, correct and incorrect steps often alternate, we introduce the concepts of Error Propagation and Error Cessation, enhancing PRMs' ability to identify both effective self-correction behaviors and reasoning based on erroneous steps. Leveraging an LLM-based judger for annotation, we collect 1.7 million data samples to train a 7B PRM and evaluate it at both solution and step levels. Experimental results demonstrate that compared to existing open-source PRMs and PRMs trained on open-source datasets, our PRM achieves superior performance across various metrics, including search guidance, BoN, and F1 scores. Compared to widely used MC-based annotation methods, our annotation approach not only achieves higher data efficiency but also delivers superior performance. Detailed analysis is also conducted to demonstrate the stability and generalizability of our method.
Abstract:Recent advances in reasoning language models have witnessed a paradigm shift from short to long CoT pattern. Given the substantial computational cost of rollouts in long CoT models, maximizing the utility of fixed training datasets becomes crucial. Our analysis reveals that negative responses contain valuable components such as self-reflection and error-correction steps, yet primary existing methods either completely discard negative samples (RFT) or apply equal penalization across all tokens (RL), failing to leverage these potential learning signals. In light of this, we propose Behavior Constrained Policy Gradient with Negative Sample Augmentation (BCPG-NSA), a fine-grained offline RL framework that encompasses three stages: 1) sample segmentation, 2) consensus-based step correctness assessment combining LLM and PRM judgers, and 3) policy optimization with NSA designed to effectively mine positive steps within negative samples. Experimental results show that BCPG-NSA outperforms baselines on several challenging math/coding reasoning benchmarks using the same training dataset, achieving improved sample efficiency and demonstrating robustness and scalability when extended to multiple iterations.
Abstract:Vehicular metaverses are an emerging paradigm that merges intelligent transportation systems with virtual spaces, leveraging advanced digital twin and Artificial Intelligence (AI) technologies to seamlessly integrate vehicles, users, and digital environments. In this paradigm, vehicular AI agents are endowed with environment perception, decision-making, and action execution capabilities, enabling real-time processing and analysis of multi-modal data to provide users with customized interactive services. Since vehicular AI agents require substantial resources for real-time decision-making, given vehicle mobility and network dynamics conditions, the AI agents are deployed in RoadSide Units (RSUs) with sufficient resources and dynamically migrated among them. However, AI agent migration requires frequent data exchanges, which may expose vehicular metaverses to potential cyber attacks. To this end, we propose a reliable vehicular AI agent migration framework, achieving reliable dynamic migration and efficient resource scheduling through cooperation between vehicles and RSUs. Additionally, we design a trust evaluation model based on the theory of planned behavior to dynamically quantify the reputation of RSUs, thereby better accommodating the personalized trust preferences of users. We then model the vehicular AI agent migration process as a partially observable markov decision process and develop a Confidence-regulated Generative Diffusion Model (CGDM) to efficiently generate AI agent migration decisions. Numerical results demonstrate that the CGDM algorithm significantly outperforms baseline methods in reducing system latency and enhancing robustness against cyber attacks.
Abstract:In this paper, we incorporate physical knowledge into learning-based high-precision target sensing using the multi-view channel state information (CSI) between multiple base stations (BSs) and user equipment (UEs). Such kind of multi-view sensing problem can be naturally cast into a conditional generation framework. To this end, we design a bipartite neural network architecture, the first part of which uses an elaborately designed encoder to fuse the latent target features embedded in the multi-view CSI, and then the second uses them as conditioning inputs of a powerful generative model to guide the target's reconstruction. Specifically, the encoder is designed to capture the physical correlation between the CSI and the target, and also be adaptive to the numbers and positions of BS-UE pairs. Therein the view-specific nature of CSI is assimilated by introducing a spatial positional embedding scheme, which exploits the structure of electromagnetic(EM)-wave propagation channels. Finally, a conditional diffusion model with a weighted loss is employed to generate the target's point cloud from the fused features. Extensive numerical results demonstrate that the proposed generative multi-view (Gen-MV) sensing framework exhibits excellent flexibility and significant performance improvement on the reconstruction quality of target's shape and EM properties.
Abstract:One of the key points in designing an integrated sensing and communication (ISAC) system using computational imaging is the division size of imaging pixels. If the size is too small, it leads to a high number of pixels that need processing. On the contrary, it usually causes large processing errors since each pixel is no longer uniformly coherent. In this paper, a novel method is proposed to address such a problem in environment sensing in millimeter-wave wireless cellular networks, which effectively cancels the severe errors caused by large pixel division as in conventional computational imaging algorithms. To this end, a novel computational imaging model in an integral form is introduced, which leverages the continuous characteristics of object surfaces in the environment and takes into account the different phases associated with the different parts of the pixel. The proposed algorithm extends computational imaging to large wireless communication scenarios for the first time. The performance of the proposed method is then analyzed, and extensive numerical results verify its effectiveness.
Abstract:Deep learning (DL) has emerged as a transformative technology with immense potential to reshape the sixth-generation (6G) wireless communication network. By utilizing advanced algorithms for feature extraction and pattern recognition, DL provides unprecedented capabilities in optimizing the network efficiency and performance, particularly in physical layer communications. Although DL technologies present the great potential, they also face significant challenges related to the robustness, which are expected to intensify in the complex and demanding 6G environment. Specifically, current DL models typically exhibit substantial performance degradation in dynamic environments with time-varying channels, interference of noise and different scenarios, which affect their effectiveness in diverse real-world applications. This paper provides a comprehensive overview of strategies and approaches for robust DL-based methods in physical layer communications. First we introduce the key challenges that current DL models face. Then we delve into a detailed examination of DL approaches specifically tailored to enhance robustness in 6G, which are classified into data-driven and model-driven strategies. Finally, we verify the effectiveness of these methods by case studies and outline future research directions.
Abstract:Fine-tuning pre-trained large language models (LLM) in a distributed manner poses significant challenges on resource-constrained edge devices. To address this challenge, we propose FedsLLM, a novel framework that integrates split federated learning with parameter-efficient fine-tuning techniques. By leveraging model splitting and Low-Rank Adaptation (LoRA), FedsLLM reduces the computational burden on edge devices. Furthermore, the introduction of a federated server facilitates parallel training and enhances privacy. To accommodate heterogeneous communication conditions and diverse computational capabilities of edge devices, as well as the impact of LoRA rank selection on model convergence and training cost, we formulate a joint optimization problem. The formulated problem jointly optimizes subchannel allocation, power control, model splitting point selection, and LoRA rank configuration, all aimed at minimizing total training delay. An alternating optimization algorithm is developed to efficiently solve this problem and accelerate the training process. Simulation results demonstrate that the proposed FedsLLM framework achieves comparable model accuracy while significantly reducing client-side computational requirements. Furthermore, the proposed resource allocation scheme and adaptive LoRA rank selection strategy notably reduce the training latency compared to conventional approaches.
Abstract:The emergence of sixth-generation and beyond communication systems is expected to fundamentally transform digital experiences through introducing unparalleled levels of intelligence, efficiency, and connectivity. A promising technology poised to enable this revolutionary vision is the wireless large AI model (WLAM), characterized by its exceptional capabilities in data processing, inference, and decision-making. In light of these remarkable capabilities, this paper provides a comprehensive survey of WLAM, elucidating its fundamental principles, diverse applications, critical challenges, and future research opportunities. We begin by introducing the background of WLAM and analyzing the key synergies with wireless networks, emphasizing the mutual benefits. Subsequently, we explore the foundational characteristics of WLAM, delving into their unique relevance in wireless environments. Then, the role of WLAM in optimizing wireless communication systems across various use cases and the reciprocal benefits are systematically investigated. Furthermore, we discuss the integration of WLAM with emerging technologies, highlighting their potential to enable transformative capabilities and breakthroughs in wireless communication. Finally, we thoroughly examine the high-level challenges hindering the practical implementation of WLAM and discuss pivotal future research directions.
Abstract:The integration of sensing and communication (ISAC) is pivotal for the Metaverse but faces challenges like high data volume and privacy concerns. This paper proposes a novel integrated sensing, computing, and semantic communication (ISCSC) framework, which uses semantic communication to transmit only contextual information, reducing data overhead and enhancing efficiency. To address the sensitivity of semantic communication to channel conditions, fluid antennas (FAs) are introduced, enabling dynamic adaptability. The FA-enabled ISCSC framework considers multiple users and extended targets composed of a series of scatterers, formulating a joint optimization problem to maximize the data rate while ensuring sensing accuracy and meeting computational and power constraints. An alternating optimization (AO) method decomposes the problem into subproblems for ISAC beamforming, FA positioning, and semantic extraction. Simulations confirm the framework's effectiveness in improving data rates and sensing performance.