Abstract:Large Language Models (LLMs) have demonstrated impressive reasoning capabilities in complex problem-solving tasks, sparking growing interest in their application to preference reasoning in recommendation systems. Existing methods typically rely on fine-tuning with explicit chain-of-thought (CoT) data. However, these methods face significant practical limitations due to (1) the difficulty of obtaining high-quality CoT data in recommendation and (2) the high inference latency caused by generating CoT reasoning. In this work, we explore an alternative approach that shifts from explicit CoT reasoning to compact, information-dense latent reasoning. This approach eliminates the need for explicit CoT generation and improves inference efficiency, as a small set of latent tokens can effectively capture the entire reasoning process. Building on this idea, we propose $\textit{\underline{R}einforced \underline{Latent} \underline{R}easoning for \underline{R}ecommendation}$ (LatentR$^3$), a novel end-to-end training framework that leverages reinforcement learning (RL) to optimize latent reasoning without relying on any CoT data.LatentR$^3$ adopts a two-stage training strategy: first, supervised fine-tuning to initialize the latent reasoning module, followed by pure RL training to encourage exploration through a rule-based reward design. Our RL implementation is based on a modified GRPO algorithm, which reduces computational overhead during training and introduces continuous reward signals for more efficient learning. Extensive experiments demonstrate that LatentR$^3$ enables effective latent reasoning without any direct supervision of the reasoning process, significantly improving performance when integrated with different LLM-based recommendation methods. Our codes are available at https://anonymous.4open.science/r/R3-A278/.
Abstract:Diffusion models have shown significant potential in generating oracle items that best match user preference with guidance from user historical interaction sequences. However, the quality of guidance is often compromised by unpredictable missing data in observed sequence, leading to suboptimal item generation. Since missing data is uncertain in both occurrence and content, recovering it is impractical and may introduce additional errors. To tackle this challenge, we propose a novel dual-side Thompson sampling-based Diffusion Model (TDM), which simulates extra missing data in the guidance signals and allows diffusion models to handle existing missing data through extrapolation. To preserve user preference evolution in sequences despite extra missing data, we introduce Dual-side Thompson Sampling to implement simulation with two probability models, sampling by exploiting user preference from both item continuity and sequence stability. TDM strategically removes items from sequences based on dual-side Thompson sampling and treats these edited sequences as guidance for diffusion models, enhancing models' robustness to missing data through consistency regularization. Additionally, to enhance the generation efficiency, TDM is implemented under the denoising diffusion implicit models to accelerate the reverse process. Extensive experiments and theoretical analysis validate the effectiveness of TDM in addressing missing data in sequential recommendations.
Abstract:Preference alignment through Direct Preference Optimization (DPO) has demonstrated significant effectiveness in aligning multimodal large language models (MLLMs) with human preferences. However, existing methods focus primarily on language preferences while neglecting the critical visual context. In this paper, we propose an Adaptive Vision-enhanced Preference optimization (AdaViP) that addresses these limitations through two key innovations: (1) vision-based preference pair construction, which integrates multiple visual foundation models to strategically remove key visual elements from the image, enhancing MLLMs' sensitivity to visual details; and (2) adaptive preference optimization that dynamically balances vision- and language-based preferences for more accurate alignment. Extensive evaluations across different benchmarks demonstrate our effectiveness. Notably, our AdaViP-7B achieves 93.7% and 96.4% reductions in response-level and mentioned-level hallucination respectively on the Object HalBench, significantly outperforming current state-of-the-art methods.
Abstract:Mechanistic interpretability of large language models (LLMs) aims to uncover the internal processes of information propagation and reasoning. Sparse autoencoders (SAEs) have demonstrated promise in this domain by extracting interpretable and monosemantic features. However, prior works primarily focus on feature extraction from a single layer, failing to effectively capture activations that span multiple layers. In this paper, we introduce Route Sparse Autoencoder (RouteSAE), a new framework that integrates a routing mechanism with a shared SAE to efficiently extract features from multiple layers. It dynamically assigns weights to activations from different layers, incurring minimal parameter overhead while achieving high interpretability and flexibility for targeted feature manipulation. We evaluate RouteSAE through extensive experiments on Llama-3.2-1B-Instruct. Specifically, under the same sparsity constraint of 64, RouteSAE extracts 22.5% more features than baseline SAEs while achieving a 22.3% higher interpretability score. These results underscore the potential of RouteSAE as a scalable and effective method for LLM interpretability, with applications in feature discovery and model intervention. Our codes are available at https://github.com/swei2001/RouteSAEs.
Abstract:Aligning large language models (LLMs) with human preferences is critical for real-world deployment, yet existing methods like RLHF face computational and stability challenges. While DPO establishes an offline paradigm with single hyperparameter $\beta$, subsequent methods like SimPO reintroduce complexity through dual parameters ($\beta$, $\gamma$). We propose {ReLU-based Preference Optimization (RePO)}, a streamlined algorithm that eliminates $\beta$ via two advances: (1) retaining SimPO's reference-free margins but removing $\beta$ through gradient analysis, and (2) adopting a ReLU-based max-margin loss that naturally filters trivial pairs. Theoretically, RePO is characterized as SimPO's limiting case ($\beta \to \infty$), where the logistic weighting collapses to binary thresholding, forming a convex envelope of the 0-1 loss. Empirical results on AlpacaEval 2 and Arena-Hard show that RePO outperforms DPO and SimPO across multiple base models, requiring only one hyperparameter to tune.
Abstract:While large language models (LLMs) are increasingly adapted for recommendation systems via supervised fine-tuning (SFT), this approach amplifies popularity bias due to its likelihood maximization objective, compromising recommendation diversity and fairness. To address this, we present Flow-guided fine-tuning recommender (Flower), which replaces SFT with a Generative Flow Network (GFlowNet) framework that enacts process supervision through token-level reward propagation. Flower's key innovation lies in decomposing item-level rewards into constituent token rewards, enabling direct alignment between token generation probabilities and their reward signals. This mechanism achieves three critical advancements: (1) popularity bias mitigation and fairness enhancement through empirical distribution matching, (2) preservation of diversity through GFlowNet's proportional sampling, and (3) flexible integration of personalized preferences via adaptable token rewards. Experiments demonstrate Flower's superior distribution-fitting capability and its significant advantages over traditional SFT in terms of fairness, diversity, and accuracy, highlighting its potential to improve LLM-based recommendation systems. The implementation is available via https://github.com/Mr-Peach0301/Flower
Abstract:Medication recommendation systems have garnered attention within healthcare for their potential to deliver personalized and efficacious drug combinations based on patient's clinical data. However, existing methodologies encounter challenges in adapting to diverse Electronic Health Records (EHR) systems and effectively utilizing unstructured data, resulting in limited generalization capabilities and suboptimal performance. Recently, interest is growing in harnessing Large Language Models (LLMs) in the medical domain to support healthcare professionals and enhance patient care. Despite the emergence of medical LLMs and their promising results in tasks like medical question answering, their practical applicability in clinical settings, particularly in medication recommendation, often remains underexplored. In this study, we evaluate both general-purpose and medical-specific LLMs for medication recommendation tasks. Our findings reveal that LLMs frequently encounter the challenge of overprescribing, leading to heightened clinical risks and diminished medication recommendation accuracy. To address this issue, we propose Language-Assisted Medication Recommendation (LAMO), which employs a parameter-efficient fine-tuning approach to tailor open-source LLMs for optimal performance in medication recommendation scenarios. LAMO leverages the wealth of clinical information within clinical notes, a resource often underutilized in traditional methodologies. As a result of our approach, LAMO outperforms previous state-of-the-art methods by over 10% in internal validation accuracy. Furthermore, temporal and external validations demonstrate LAMO's robust generalization capabilities across various temporal and hospital contexts. Additionally, an out-of-distribution medication recommendation experiment demonstrates LAMO's remarkable accuracy even with medications outside the training data.
Abstract:In the era of large models, content generation is gradually shifting to Personalized Generation (PGen), tailoring content to individual preferences and needs. This paper presents the first comprehensive survey on PGen, investigating existing research in this rapidly growing field. We conceptualize PGen from a unified perspective, systematically formalizing its key components, core objectives, and abstract workflows. Based on this unified perspective, we propose a multi-level taxonomy, offering an in-depth review of technical advancements, commonly used datasets, and evaluation metrics across multiple modalities, personalized contexts, and tasks. Moreover, we envision the potential applications of PGen and highlight open challenges and promising directions for future exploration. By bridging PGen research across multiple modalities, this survey serves as a valuable resource for fostering knowledge sharing and interdisciplinary collaboration, ultimately contributing to a more personalized digital landscape.
Abstract:Direct Preference Optimization (DPO) has emerged as a promising approach for aligning large language models with human preferences. While prior work mainly extends DPO from the aspect of the objective function, we instead improve DPO from the largely overlooked but critical aspect of data selection. Specifically, we address the issue of parameter shrinkage caused by noisy data by proposing a novel margin-maximization principle for dataset curation in DPO training. To accurately estimate margins for data selection, we propose a dual-margin guided approach that considers both external reward margins and implicit DPO reward margins. Extensive experiments demonstrate that our method reduces computational cost dramatically while improving performance. Remarkably, by using just 10\% of the Ultrafeedback dataset, our approach achieves 3\% to 8\% improvements across various Llama and Mistral series models on the AlpacaEval 2.0 benchmark. Furthermore, our approach seamlessly extends to iterative DPO, yielding a roughly 3\% improvement with 25\% online data, while further reducing training time. These results highlight the potential of data selection strategies for advancing preference optimization.
Abstract:Large language models (LLMs) often produce incorrect or outdated information, necessitating efficient and precise knowledge updates. Current model editing methods, however, struggle with long-form knowledge in diverse formats, such as poetry, code snippets, and mathematical derivations. These limitations arise from their reliance on editing a single token's hidden state, a limitation we term "efficacy barrier". To solve this, we propose AnyEdit, a new autoregressive editing paradigm. It decomposes long-form knowledge into sequential chunks and iteratively edits the key token in each chunk, ensuring consistent and accurate outputs. Theoretically, we ground AnyEdit in the Chain Rule of Mutual Information, showing its ability to update any knowledge within LLMs. Empirically, it outperforms strong baselines by 21.5% on benchmarks including UnKEBench, AKEW, and our new EditEverything dataset for long-form diverse-formatted knowledge. Additionally, AnyEdit serves as a plug-and-play framework, enabling current editing methods to update knowledge with arbitrary length and format, significantly advancing the scope and practicality of LLM knowledge editing.