Abstract:Large language models (LLMs) can face factual limitations when responding to time-sensitive queries about recent events that arise after their knowledge thresholds in the training corpus. Existing search-augmented approaches fall into two categories, each with distinct limitations: multi-agent search frameworks incur substantial computational overhead by separating search planning and response synthesis across multiple LLMs, while single-LLM tool-calling methods restrict themselves to sequential planned, single-query searches from sole search sources. We present Reasoning-Search (R-Search), a single-LLM search framework that unifies multi-step planning, multi-source search execution, and answer synthesis within one coherent inference process. Innovatively, it structure the output into four explicitly defined components, including reasoning steps that guide the search process (<think>), a natural-language directed acyclic graph that represents the search plans with respect to diverse sources (<search>), retrieved results from executing the search plans (<result>), and synthesized final answers (<answer>). To enable effective generation of these structured outputs, we propose a specialized Reinforcement Fine-Tuning (ReFT) method based on GRPO, together with a multi-component reward function that optimizes LLM's answer correctness, structural validity of the generated DAG, and adherence to the defined output format. Experimental evaluation on FinSearchBench-24, SearchExpertBench-25, and seven Q and A benchmarks demonstrates that R-Search outperforms state-of-the-art methods, while achieving substantial efficiency gains through 70% reduction in context token usage and approximately 50% decrease in execution latency. Code is available at https://github.com/wentao0429/Reasoning-search.
Abstract:Accurate and safe medication recommendations are critical for effective clinical decision-making, especially in multimorbidity cases. However, existing systems rely on point-wise prediction paradigms that overlook synergistic drug effects and potential adverse drug-drug interactions (DDIs). We propose FLAME, a fine-grained list-wise alignment framework for large language models (LLMs), enabling drug-by-drug generation of drug lists. FLAME formulates recommendation as a sequential decision process, where each step adds or removes a single drug. To provide fine-grained learning signals, we devise step-wise Group Relative Policy Optimization (GRPO) with potential-based reward shaping, which explicitly models DDIs and optimizes the contribution of each drug to the overall prescription. Furthermore, FLAME enhances patient modeling by integrating structured clinical knowledge and collaborative information into the representation space of LLMs. Experiments on benchmark datasets demonstrate that FLAME achieves state-of-the-art performance, delivering superior accuracy, controllable safety-accuracy trade-offs, and strong generalization across diverse clinical scenarios. Our code is available at https://github.com/cxfann/Flame.
Abstract:While large language models (LLMs) are increasingly adapted for recommendation systems via supervised fine-tuning (SFT), this approach amplifies popularity bias due to its likelihood maximization objective, compromising recommendation diversity and fairness. To address this, we present Flow-guided fine-tuning recommender (Flower), which replaces SFT with a Generative Flow Network (GFlowNet) framework that enacts process supervision through token-level reward propagation. Flower's key innovation lies in decomposing item-level rewards into constituent token rewards, enabling direct alignment between token generation probabilities and their reward signals. This mechanism achieves three critical advancements: (1) popularity bias mitigation and fairness enhancement through empirical distribution matching, (2) preservation of diversity through GFlowNet's proportional sampling, and (3) flexible integration of personalized preferences via adaptable token rewards. Experiments demonstrate Flower's superior distribution-fitting capability and its significant advantages over traditional SFT in terms of fairness, diversity, and accuracy, highlighting its potential to improve LLM-based recommendation systems. The implementation is available via https://github.com/Mr-Peach0301/Flower
Abstract:Multi-Objective Alignment (MOA) aims to align LLMs' responses with multiple human preference objectives, with Direct Preference Optimization (DPO) emerging as a prominent approach. However, we find that DPO-based MOA approaches suffer from widespread preference conflicts in the data, where different objectives favor different responses. This results in conflicting optimization directions, hindering the optimization on the Pareto Front. To address this, we propose to construct Pareto-optimal responses to resolve preference conflicts. To efficiently obtain and utilize such responses, we propose a self-improving DPO framework that enables LLMs to self-generate and select Pareto-optimal responses for self-supervised preference alignment. Extensive experiments on two datasets demonstrate the superior Pareto Front achieved by our framework compared to various baselines. Code is available at \url{https://github.com/zyttt-coder/SIPO}.
Abstract:Monte Carlo Tree Search (MCTS) based methods provide promising approaches for generating synthetic data to enhance the self-training of Large Language Model (LLM) based multi-agent systems (MAS). These methods leverage Q-values to estimate individual agent contributions. However, relying solely on Q-values to identify informative data may misalign with the data synthesis objective, as the focus should be on selecting data that best enhances model training. To address this discrepancy, we propose Data Influence-oriented Tree Search (DITS), a novel framework that incorporates influence scores to guide both tree search and data selection. By leveraging influence scores, we effectively identify the most impactful data for system improvement, thereby enhancing model performance. Furthermore, we derive influence score estimation methods tailored for non-differentiable metrics, significantly reducing computational overhead by utilizing inference computations. Extensive experiments on eight multi-agent datasets demonstrate the robustness and effectiveness of the proposed methods. Notably, our findings reveal that allocating more inference resources to estimate influence scores, rather than Q-values, during data synthesis can more effectively and efficiently enhance model training.
Abstract:Recent work has improved recommendation models remarkably by equipping them with debiasing methods. Due to the unavailability of fully-exposed datasets, most existing approaches resort to randomly-exposed datasets as a proxy for evaluating debiased models, employing traditional evaluation scheme to represent the recommendation performance. However, in this study, we reveal that traditional evaluation scheme is not suitable for randomly-exposed datasets, leading to inconsistency between the Recall performance obtained using randomly-exposed datasets and that obtained using fully-exposed datasets. Such inconsistency indicates the potential unreliability of experiment conclusions on previous debiasing techniques and calls for unbiased Recall evaluation using randomly-exposed datasets. To bridge the gap, we propose the Unbiased Recall Evaluation (URE) scheme, which adjusts the utilization of randomly-exposed datasets to unbiasedly estimate the true Recall performance on fully-exposed datasets. We provide theoretical evidence to demonstrate the rationality of URE and perform extensive experiments on real-world datasets to validate its soundness.
Abstract:Adapting Large Language Models (LLMs) for agent tasks is critical in developing language agents. Direct Preference Optimization (DPO) is a promising technique for this adaptation with the alleviation of compounding errors, offering a means to directly optimize Reinforcement Learning (RL) objectives. However, applying DPO to multi-turn tasks presents challenges due to the inability to cancel the partition function. Overcoming this obstacle involves making the partition function independent of the current state and addressing length disparities between preferred and dis-preferred trajectories. In this light, we replace the policy constraint with the state-action occupancy measure constraint in the RL objective and add length normalization to the Bradley-Terry model, yielding a novel loss function named DMPO for multi-turn agent tasks with theoretical explanations. Extensive experiments on three multi-turn agent task datasets confirm the effectiveness and superiority of the DMPO loss.
Abstract:In the field of transportation, it is of paramount importance to address and mitigate illegal actions committed by both motor and non-motor vehicles. Among those actions, wrong-way cycling (i.e., riding a bicycle or e-bike in the opposite direction of the designated traffic flow) poses significant risks to both cyclists and other road users. To this end, this paper formulates a problem of detecting wrong-way cycling ratios in CCTV videos. Specifically, we propose a sparse sampling method called WWC-Predictor to efficiently solve this problem, addressing the inefficiencies of direct tracking methods. Our approach leverages both detection-based information, which utilizes the information from bounding boxes, and orientation-based information, which provides insights into the image itself, to enhance instantaneous information capture capability. On our proposed benchmark dataset consisting of 35 minutes of video sequences and minute-level annotation, our method achieves an average error rate of a mere 1.475% while taking only 19.12% GPU time of straightforward tracking methods under the same detection model. This remarkable performance demonstrates the effectiveness of our approach in identifying and predicting instances of wrong-way cycling.
Abstract:Recommender systems are vulnerable to injective attacks, which inject limited fake users into the platforms to manipulate the exposure of target items to all users. In this work, we identify that conventional injective attackers overlook the fact that each item has its unique potential audience, and meanwhile, the attack difficulty across different users varies. Blindly attacking all users will result in a waste of fake user budgets and inferior attack performance. To address these issues, we focus on an under-explored attack task called target user attacks, aiming at promoting target items to a particular user group. In addition, we formulate the varying attack difficulty as heterogeneous treatment effects through a causal lens and propose an Uplift-guided Budget Allocation (UBA) framework. UBA estimates the treatment effect on each target user and optimizes the allocation of fake user budgets to maximize the attack performance. Theoretical and empirical analysis demonstrates the rationality of treatment effect estimation methods of UBA. By instantiating UBA on multiple attackers, we conduct extensive experiments on three datasets under various settings with different target items, target users, fake user budgets, victim models, and defense models, validating the effectiveness and robustness of UBA.
Abstract:The new kind of Agent-oriented information system, exemplified by GPTs, urges us to inspect the information system infrastructure to support Agent-level information processing and to adapt to the characteristics of Large Language Model (LLM)-based Agents, such as interactivity. In this work, we envisage the prospect of the recommender system on LLM-based Agent platforms and introduce a novel recommendation paradigm called Rec4Agentverse, comprised of Agent Items and Agent Recommender. Rec4Agentverse emphasizes the collaboration between Agent Items and Agent Recommender, thereby promoting personalized information services and enhancing the exchange of information beyond the traditional user-recommender feedback loop. Additionally, we prospect the evolution of Rec4Agentverse and conceptualize it into three stages based on the enhancement of the interaction and information exchange among Agent Items, Agent Recommender, and the user. A preliminary study involving several cases of Rec4Agentverse validates its significant potential for application. Lastly, we discuss potential issues and promising directions for future research.