Abstract:Thanks to the development of cross-modal models, text-to-video retrieval (T2VR) is advancing rapidly, but its robustness remains largely unexamined. Existing attacks against T2VR are designed to push videos away from queries, i.e., suppressing the ranks of videos, while the attacks that pull videos towards selected queries, i.e., promoting the ranks of videos, remain largely unexplored. These attacks can be more impactful as attackers may gain more views/clicks for financial benefits and widespread (mis)information. To this end, we pioneer the first attack against T2VR to promote videos adversarially, dubbed the Video Promotion attack (ViPro). We further propose Modal Refinement (MoRe) to capture the finer-grained, intricate interaction between visual and textual modalities to enhance black-box transferability. Comprehensive experiments cover 2 existing baselines, 3 leading T2VR models, 3 prevailing datasets with over 10k videos, evaluated under 3 scenarios. All experiments are conducted in a multi-target setting to reflect realistic scenarios where attackers seek to promote the video regarding multiple queries simultaneously. We also evaluated our attacks for defences and imperceptibility. Overall, ViPro surpasses other baselines by over $30/10/4\%$ for white/grey/black-box settings on average. Our work highlights an overlooked vulnerability, provides a qualitative analysis on the upper/lower bound of our attacks, and offers insights into potential counterplays. Code will be publicly available at https://github.com/michaeltian108/ViPro.
Abstract:Developing reliable defenses against patch attacks on object detectors has attracted increasing interest. However, we identify that existing defense evaluations lack a unified and comprehensive framework, resulting in inconsistent and incomplete assessments of current methods. To address this issue, we revisit 11 representative defenses and present the first patch defense benchmark, involving 2 attack goals, 13 patch attacks, 11 object detectors, and 4 diverse metrics. This leads to the large-scale adversarial patch dataset with 94 types of patches and 94,000 images. Our comprehensive analyses reveal new insights: (1) The difficulty in defending against naturalistic patches lies in the data distribution, rather than the commonly believed high frequencies. Our new dataset with diverse patch distributions can be used to improve existing defenses by 15.09% AP@0.5. (2) The average precision of the attacked object, rather than the commonly pursued patch detection accuracy, shows high consistency with defense performance. (3) Adaptive attacks can substantially bypass existing defenses, and defenses with complex/stochastic models or universal patch properties are relatively robust. We hope that our analyses will serve as guidance on properly evaluating patch attacks/defenses and advancing their design. Code and dataset are available at https://github.com/Gandolfczjh/APDE, where we will keep integrating new attacks/defenses.
Abstract:The evolution of video generation techniques, such as Sora, has made it increasingly easy to produce high-fidelity AI-generated videos, raising public concern over the dissemination of synthetic content. However, existing detection methodologies remain limited by their insufficient exploration of temporal artifacts in synthetic videos. To bridge this gap, we establish a theoretical framework through second-order dynamical analysis under Newtonian mechanics, subsequently extending the Second-order Central Difference features tailored for temporal artifact detection. Building on this theoretical foundation, we reveal a fundamental divergence in second-order feature distributions between real and AI-generated videos. Concretely, we propose Detection by Difference of Differences (D3), a novel training-free detection method that leverages the above second-order temporal discrepancies. We validate the superiority of our D3 on 4 open-source datasets (Gen-Video, VideoPhy, EvalCrafter, VidProM), 40 subsets in total. For example, on GenVideo, D3 outperforms the previous best method by 10.39% (absolute) mean Average Precision. Additional experiments on time cost and post-processing operations demonstrate D3's exceptional computational efficiency and strong robust performance. Our code is available at https://github.com/Zig-HS/D3.
Abstract:Text-to-image diffusion models (T2I DMs), represented by Stable Diffusion, which generate highly realistic images based on textual input, have been widely used. However, their misuse poses serious security risks. While existing concept unlearning methods aim to mitigate these risks, they struggle to balance unlearning effectiveness with generative retainability.To overcome this limitation, we innovatively propose the Key Step Concept Unlearning (KSCU) method, which ingeniously capitalizes on the unique stepwise sampling characteristic inherent in diffusion models during the image generation process. Unlike conventional approaches that treat all denoising steps equally, KSCU strategically focuses on pivotal steps with the most influence over the final outcome by dividing key steps for different concept unlearning tasks and fine-tuning the model only at those steps. This targeted approach reduces the number of parameter updates needed for effective unlearning, while maximizing the retention of the model's generative capabilities.Through extensive benchmark experiments, we demonstrate that KSCU effectively prevents T2I DMs from generating undesirable images while better retaining the model's generative capabilities.Our code will be released.
Abstract:Large Vision-Language Models (LVLMs) have achieved remarkable success but continue to struggle with object hallucination (OH), generating outputs inconsistent with visual inputs. While previous work has proposed methods to reduce OH, the visual decision-making mechanisms that lead to hallucinations remain poorly understood. In this paper, we propose VaLSe, a Vision-aware Latent Steering framework that adopts an interpretation-then-mitigation strategy to address OH in LVLMs. By tackling dual challenges of modeling complex vision-language interactions and eliminating spurious activation artifacts, VaLSe can generate visual contribution maps that trace how specific visual inputs influence individual output tokens. These maps reveal the model's vision-aware focus regions, which are then used to perform latent space steering, realigning internal representations toward semantically relevant content and reducing hallucinated outputs. Extensive experiments demonstrate that VaLSe is a powerful interpretability tool and an effective method for enhancing model robustness against OH across multiple benchmarks. Furthermore, our analysis uncovers limitations in existing OH evaluation metrics, underscoring the need for more nuanced, interpretable, and visually grounded OH benchmarks in future work. Code is available at: https://github.com/Ziwei-Zheng/VaLSe.
Abstract:In surrogate ensemble attacks, using more surrogate models yields higher transferability but lower resource efficiency. This practical trade-off between transferability and efficiency has largely limited existing attacks despite many pre-trained models are easily accessible online. In this paper, we argue that such a trade-off is caused by an unnecessary common assumption, i.e., all models should be identical across iterations. By lifting this assumption, we can use as many surrogates as we want to unleash transferability without sacrificing efficiency. Concretely, we propose Selective Ensemble Attack (SEA), which dynamically selects diverse models (from easily accessible pre-trained models) across iterations based on our new interpretation of decoupling within-iteration and cross-iteration model diversity.In this way, the number of within-iteration models is fixed for maintaining efficiency, while only cross-iteration model diversity is increased for higher transferability. Experiments on ImageNet demonstrate the superiority of SEA in various scenarios. For example, when dynamically selecting 4 from 20 accessible models, SEA yields 8.5% higher transferability than existing attacks under the same efficiency. The superiority of SEA also generalizes to real-world systems, such as commercial vision APIs and large vision-language models. Overall, SEA opens up the possibility of adaptively balancing transferability and efficiency according to specific resource requirements.
Abstract:Text-to-image synthesis has progressed to the point where models can generate visually compelling images from natural language prompts. Yet, existing methods often fail to reconcile high-level semantic fidelity with explicit spatial control, particularly in scenes involving multiple objects, nuanced relations, or complex layouts. To bridge this gap, we propose a Hierarchical Cross-Modal Alignment (HCMA) framework for grounded text-to-image generation. HCMA integrates two alignment modules into each diffusion sampling step: a global module that continuously aligns latent representations with textual descriptions to ensure scene-level coherence, and a local module that employs bounding-box layouts to anchor objects at specified locations, enabling fine-grained spatial control. Extensive experiments on the MS-COCO 2014 validation set show that HCMA surpasses state-of-the-art baselines, achieving a 0.69 improvement in Frechet Inception Distance (FID) and a 0.0295 gain in CLIP Score. These results demonstrate HCMA's effectiveness in faithfully capturing intricate textual semantics while adhering to user-defined spatial constraints, offering a robust solution for semantically grounded image generation. Our code is available at https://github.com/hwang-cs-ime/HCMA.
Abstract:Recent advances in generative modeling have enabled the generation of high-quality synthetic data that is applicable in a variety of domains, including face recognition. Here, state-of-the-art generative models typically rely on conditioning and fine-tuning of powerful pretrained diffusion models to facilitate the synthesis of realistic images of a desired identity. Yet, these models often do not consider the identity of subjects during training, leading to poor consistency between generated and intended identities. In contrast, methods that employ identity-based training objectives tend to overfit on various aspects of the identity, and in turn, lower the diversity of images that can be generated. To address these issues, we present in this paper a novel generative diffusion-based framework, called ID-Booth. ID-Booth consists of a denoising network responsible for data generation, a variational auto-encoder for mapping images to and from a lower-dimensional latent space and a text encoder that allows for prompt-based control over the generation procedure. The framework utilizes a novel triplet identity training objective and enables identity-consistent image generation while retaining the synthesis capabilities of pretrained diffusion models. Experiments with a state-of-the-art latent diffusion model and diverse prompts reveal that our method facilitates better intra-identity consistency and inter-identity separability than competing methods, while achieving higher image diversity. In turn, the produced data allows for effective augmentation of small-scale datasets and training of better-performing recognition models in a privacy-preserving manner. The source code for the ID-Booth framework is publicly available at https://github.com/dariant/ID-Booth.
Abstract:While virtual try-on for clothes and shoes with diffusion models has gained attraction, virtual try-on for ornaments, such as bracelets, rings, earrings, and necklaces, remains largely unexplored. Due to the intricate tiny patterns and repeated geometric sub-structures in most ornaments, it is much more difficult to guarantee identity and appearance consistency under large pose and scale variances between ornaments and models. This paper proposes the task of virtual try-on for ornaments and presents a method to improve the geometric and appearance preservation of ornament virtual try-ons. Specifically, we estimate an accurate wearing mask to improve the alignments between ornaments and models in an iterative scheme alongside the denoising process. To preserve structure details, we further regularize attention layers to map the reference ornament mask to the wearing mask in an implicit way. Experimental results demonstrate that our method successfully wears ornaments from reference images onto target models, handling substantial differences in scale and pose while preserving identity and achieving realistic visual effects.
Abstract:Vision Transformers (ViTs) have been widely applied in various computer vision and vision-language tasks. To gain insights into their robustness in practical scenarios, transferable adversarial examples on ViTs have been extensively studied. A typical approach to improving adversarial transferability is by refining the surrogate model. However, existing work on ViTs has restricted their surrogate refinement to backward propagation. In this work, we instead focus on Forward Propagation Refinement (FPR) and specifically refine two key modules of ViTs: attention maps and token embeddings. For attention maps, we propose Attention Map Diversification (AMD), which diversifies certain attention maps and also implicitly imposes beneficial gradient vanishing during backward propagation. For token embeddings, we propose Momentum Token Embedding (MTE), which accumulates historical token embeddings to stabilize the forward updates in both the Attention and MLP blocks. We conduct extensive experiments with adversarial examples transferred from ViTs to various CNNs and ViTs, demonstrating that our FPR outperforms the current best (backward) surrogate refinement by up to 7.0\% on average. We also validate its superiority against popular defenses and its compatibility with other transfer methods. Codes and appendix are available at https://github.com/RYC-98/FPR.