Abstract:In the field of artificial intelligence, real parameter single objective optimization is an important direction. Both the Differential Evolution (DE) and the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) demonstrate good performance for real parameter single objective optimization. Nevertheless, there exist other types of evolutionary algorithm for the purpose. In recent years, researchers begin to study long-term search. EA4eig - an ensemble of three DE variants and CMA-ES - performs well for long-term search. In this paper, we introduce two types of evolutionary algorithm proposed recently - crisscross search and sparrow search - into EA4eig as secondary evolutionary algorithms to process inferior individuals. Thus, EA4eigCS is obtained. In our ensemble, the secondary evolutionary algorithms are expected to vary distribution of the population for breaking stagnation. Experimental results show that our EA4eigCS outperforms EA4eig and is competitive when compared with state-of-the-art algorithms. Code and supplementary material are available at:https://anonymous.4open.science/r/EA4eigCS-2A43.
Abstract:Longitudinal brain MRI is essential for lifespan study, yet high attrition rates often lead to missing data, complicating analysis. Deep generative models have been explored, but most rely solely on image intensity, leading to two key limitations: 1) the fidelity or trustworthiness of the generated brain images are limited, making downstream studies questionable; 2) the usage flexibility is restricted due to fixed guidance rooted in the model structure, restricting full ability to versatile application scenarios. To address these challenges, we introduce DF-DiffCom, a Kolmogorov-Arnold Networks (KAN)-enhanced diffusion model that smartly leverages deformation fields for trustworthy longitudinal brain image completion. Trained on OASIS-3, DF-DiffCom outperforms state-of-the-art methods, improving PSNR by 5.6% and SSIM by 0.12. More importantly, its modality-agnostic nature allows smooth extension to varied MRI modalities, even to attribute maps such as brain tissue segmentation results.
Abstract:The development of audio foundation models has accelerated rapidly since the emergence of GPT-4o. However, the lack of comprehensive evaluation has become a critical bottleneck for further progress in the field, particularly in audio generation. Current audio evaluation faces three major challenges: (1) audio evaluation lacks a unified framework, with datasets and code scattered across various sources, hindering fair and efficient cross-model comparison;(2) audio codecs, as a key component of audio foundation models, lack a widely accepted and holistic evaluation methodology; (3) existing speech benchmarks are heavily reliant on English, making it challenging to objectively assess models' performance on Chinese. To address the first issue, we introduce UltraEval-Audio, a unified evaluation framework for audio foundation models, specifically designed for both audio understanding and generation tasks. UltraEval-Audio features a modular architecture, supporting 10 languages and 14 core task categories, while seamlessly integrating 24 mainstream models and 36 authoritative benchmarks. To enhance research efficiency, the framework provides a one-command evaluation feature, accompanied by real-time public leaderboards. For the second challenge, UltraEval-Audio adopts a novel comprehensive evaluation scheme for audio codecs, evaluating performance across three key dimensions: semantic accuracy, timbre fidelity, and acoustic quality. To address the third issue, we propose two new Chinese benchmarks, SpeechCMMLU and SpeechHSK, designed to assess Chinese knowledge proficiency and language fluency. We wish that UltraEval-Audio will provide both academia and industry with a transparent, efficient, and fair platform for comparison of audio models. Our code, benchmarks, and leaderboards are available at https://github.com/OpenBMB/UltraEval-Audio.
Abstract:Artificial Intelligence (AI) is transforming domains from healthcare and agriculture to finance and industry. As progress on Earth meets growing constraints, the next frontier is outer space, where AI can enable autonomous, resilient operations under extreme uncertainty and limited human oversight. This paper introduces Space AI as a unified interdisciplinary field at the intersection of artificial intelligence and space science and technology. We consolidate historical developments and contemporary progress, and propose a systematic framework that organises Space AI into four mission contexts: 1 AI on Earth, covering intelligent mission planning, spacecraft design optimisation, simulation, and ground-based data analytics; 2 AI in Orbit, focusing on satellite and station autonomy, space robotics, on-board/near-real-time data processing, communication optimisation, and orbital safety; (3) AI in Deep Space, enabling autonomous navigation, adaptive scientific discovery, resource mapping, and long-duration human-AI collaboration under communication constraints; and 4 AI for Multi-Planetary Life, supporting in-situ resource utilisation, habitat and infrastructure construction, life-support and ecological management, and resilient interplanetary networks. Ultimately, Space AI can accelerate humanity's capability to explore and operate in space, while translating advances in sensing, robotics, optimisation, and trustworthy AI into broad societal impact on Earth.
Abstract:Few-shot Knowledge Graph Completion (FKGC) infers missing triples from limited support samples, tackling long-tail distribution challenges. Existing methods, however, struggle to capture complex relational patterns and mitigate data sparsity. To address these challenges, we propose a novel FKGC framework for conjugate relation modeling (CR-FKGC). Specifically, it employs a neighborhood aggregation encoder to integrate higher-order neighbor information, a conjugate relation learner combining an implicit conditional diffusion relation module with a stable relation module to capture stable semantics and uncertainty offsets, and a manifold conjugate decoder for efficient evaluation and inference of missing triples in manifold space. Experiments on three benchmarks demonstrate that our method achieves superior performance over state-of-the-art methods.
Abstract:Video Foundation Models (VFMs) exhibit remarkable visual generation performance, but struggle in compositional scenarios (e.g., motion, numeracy, and spatial relation). In this work, we introduce Test-Time Optimization and Memorization (TTOM), a training-free framework that aligns VFM outputs with spatiotemporal layouts during inference for better text-image alignment. Rather than direct intervention to latents or attention per-sample in existing work, we integrate and optimize new parameters guided by a general layout-attention objective. Furthermore, we formulate video generation within a streaming setting, and maintain historical optimization contexts with a parametric memory mechanism that supports flexible operations, such as insert, read, update, and delete. Notably, we found that TTOM disentangles compositional world knowledge, showing powerful transferability and generalization. Experimental results on the T2V-CompBench and Vbench benchmarks establish TTOM as an effective, practical, scalable, and efficient framework to achieve cross-modal alignment for compositional video generation on the fly.




Abstract:Large Vision-Language Models (LVLMs) augmented with Retrieval-Augmented Generation (RAG) are increasingly employed in medical AI to enhance factual grounding through external clinical image-text retrieval. However, this reliance creates a significant attack surface. We propose MedThreatRAG, a novel multimodal poisoning framework that systematically probes vulnerabilities in medical RAG systems by injecting adversarial image-text pairs. A key innovation of our approach is the construction of a simulated semi-open attack environment, mimicking real-world medical systems that permit periodic knowledge base updates via user or pipeline contributions. Within this setting, we introduce and emphasize Cross-Modal Conflict Injection (CMCI), which embeds subtle semantic contradictions between medical images and their paired reports. These mismatches degrade retrieval and generation by disrupting cross-modal alignment while remaining sufficiently plausible to evade conventional filters. While basic textual and visual attacks are included for completeness, CMCI demonstrates the most severe degradation. Evaluations on IU-Xray and MIMIC-CXR QA tasks show that MedThreatRAG reduces answer F1 scores by up to 27.66% and lowers LLaVA-Med-1.5 F1 rates to as low as 51.36%. Our findings expose fundamental security gaps in clinical RAG systems and highlight the urgent need for threat-aware design and robust multimodal consistency checks. Finally, we conclude with a concise set of guidelines to inform the safe development of future multimodal medical RAG systems.
Abstract:Despite advances in reinforcement learning (RL)-based video reasoning with large language models (LLMs), data collection and finetuning remain significant challenges. These methods often rely on large-scale supervised fine-tuning (SFT) with extensive video data and long Chain-of-Thought (CoT) annotations, making them costly and hard to scale. To address this, we present Video-RTS, a new approach to improve video reasoning capability with drastically improved data efficiency by combining data-efficient RL with a video-adaptive test-time scaling (TTS) strategy. Based on observations about the data scaling of RL samples, we skip the resource-intensive SFT step and employ efficient pure-RL training with output-based rewards, requiring no additional annotations or extensive fine-tuning. Furthermore, to utilize computational resources more efficiently, we introduce a sparse-to-dense video TTS strategy that improves inference by iteratively adding frames based on output consistency. We validate our approach on multiple video reasoning benchmarks, showing that Video-RTS surpasses existing video reasoning models by an average of 2.4% in accuracy using only 3.6% training samples. For example, Video-RTS achieves a 4.2% improvement on Video-Holmes, a recent and challenging video reasoning benchmark, and a 2.6% improvement on MMVU. Notably, our pure RL training and adaptive video TTS offer complementary strengths, enabling Video-RTS's strong reasoning performance.




Abstract:While Large Language Models (LLMs) support long contexts, they struggle with performance degradation within the context window. Current solutions incur prohibitive training costs, leaving statistical behaviors and cost-effective approaches underexplored. From the decoding perspective, we identify the Posterior Salience Attenuation (PSA) phenomenon, where the salience ratio correlates with long-text performance degradation. Notably, despite the attenuation, gold tokens still occupy high-ranking positions in the decoding space. Motivated by it, we propose the training-free Positional Contrastive Decoding (PCD) that contrasts the logits derived from long-aware attention with those from designed local-aware attention, enabling the model to focus on the gains introduced by large-scale short-to-long training. Through the analysis of long-term decay simulation, we demonstrate that PCD effectively alleviates attention score degradation. Experimental results show that PCD achieves state-of-the-art performance on long-context benchmarks.
Abstract:Recent advances in test-time optimization have led to remarkable reasoning capabilities in Large Language Models (LLMs), enabling them to solve highly complex problems in math and coding. However, the reasoning capabilities of multimodal LLMs (MLLMs) still significantly lag, especially for complex video-language tasks. To address this issue, we present SiLVR, a Simple Language-based Video Reasoning framework that decomposes complex video understanding into two stages. In the first stage, SiLVR transforms raw video into language-based representations using multisensory inputs, such as short clip captions and audio/speech subtitles. In the second stage, language descriptions are fed into a powerful reasoning LLM to solve complex video-language understanding tasks. To handle long-context multisensory inputs, we use an adaptive token reduction scheme, which dynamically determines the temporal granularity with which to sample the tokens. Our simple, modular, and training-free video reasoning framework achieves the best-reported results on Video-MME (long), Video-MMMU (comprehension), Video-MMLU, CGBench, and EgoLife. Furthermore, our empirical study focused on video reasoning capabilities shows that, despite not being explicitly trained on video, strong reasoning LLMs can effectively aggregate multisensory input information from video, speech, and audio for complex temporal, causal, long-context, and knowledge acquisition reasoning tasks in video. Code is available at https://github.com/CeeZh/SILVR.