Abstract:Large language models (LLMs) are prone to capturing biases from training corpus, leading to potential negative social impacts. Existing prompt-based debiasing methods exhibit instability due to their sensitivity to prompt changes, while fine-tuning-based techniques incur substantial computational overhead and catastrophic forgetting. In this paper, we propose FairSteer, a novel inference-time debiasing framework without requiring customized prompt design or model retraining. Motivated by the linear representation hypothesis, our preliminary investigation demonstrates that fairness-related features can be encoded into separable directions in the hidden activation space. FairSteer operates in three steps: biased activation detection, debiasing steering vector (DSV) computation, and dynamic activation steering. Specifically, it first trains a lightweight linear classifier to detect bias signatures in activations, and then computes DSVs as intervention directions derived from small contrastive prompt pairs. Subsequently, it performs debiasing by adjusting activations with DSVs in the inference stage. Comprehensive evaluation with six LLMs demonstrates the superiority of FairSteer across question-answering, counterfactual input evaluation and open-ended text generation tasks. Code will be released.
Abstract:Large-scale pre-trained diffusion models have produced excellent results in the field of conditional image generation. However, restoration of ancient murals, as an important downstream task in this field, poses significant challenges to diffusion model-based restoration methods due to its large defective area and scarce training samples. Conditional restoration tasks are more concerned with whether the restored part meets the aesthetic standards of mural restoration in terms of overall style and seam detail, and such metrics for evaluating heuristic image complements are lacking in current research. We therefore propose DiffuMural, a combined Multi-scale convergence and Collaborative Diffusion mechanism with ControlNet and cyclic consistency loss to optimise the matching between the generated images and the conditional control. DiffuMural demonstrates outstanding capabilities in mural restoration, leveraging training data from 23 large-scale Dunhuang murals that exhibit consistent visual aesthetics. The model excels in restoring intricate details, achieving a coherent overall appearance, and addressing the unique challenges posed by incomplete murals lacking factual grounding. Our evaluation framework incorporates four key metrics to quantitatively assess incomplete murals: factual accuracy, textural detail, contextual semantics, and holistic visual coherence. Furthermore, we integrate humanistic value assessments to ensure the restored murals retain their cultural and artistic significance. Extensive experiments validate that our method outperforms state-of-the-art (SOTA) approaches in both qualitative and quantitative metrics.
Abstract:Phase-sensitive optical time-domain reflectometry ({\Phi}-OTDR) is a widely used distributed fiber optic sensing system in engineering. Machine learning algorithms for {\Phi}-OTDR event classification require high volumes and quality of datasets; however, high-quality datasets are currently extremely scarce in the field, leading to a lack of robustness in models, which is manifested by higher false alarm rates in real-world scenarios. One promising approach to address this issue is to augment existing data using generative models combined with a small amount of real-world data. We explored mapping both {\Phi}-OTDR features in a GAN-based generative pipeline and signal features in a Transformer classifier to hyperbolic space to seek more effective model generalization. The results indicate that state-of-the-art models exhibit stronger generalization performance and lower false alarm rates in real-world scenarios when trained on augmented datasets. TransformDAS, in particular, demonstrates the best classification performance, highlighting the benefits of Riemannian manifold mapping in {\Phi}-OTDR data generation and model classification.