Abstract:Probing and enhancing large language models' reasoning capacity remains a crucial open question. Here we re-purpose the reverse dictionary task as a case study to probe LLMs' capacity for conceptual inference. We use in-context learning to guide the models to generate the term for an object concept implied in a linguistic description. Models robustly achieve high accuracy in this task, and their representation space encodes information about object categories and fine-grained features. Further experiments suggest that the conceptual inference ability as probed by the reverse-dictionary task predicts model's general reasoning performance across multiple benchmarks, despite similar syntactic generalization behaviors across models. Explorative analyses suggest that prompting LLMs with description$\Rightarrow$word examples may induce generalization beyond surface-level differences in task construals and facilitate models on broader commonsense reasoning problems.
Abstract:Large Language Models (LLMs) have showcased remarkable capabilities in following human instructions. However, recent studies have raised concerns about the robustness of LLMs when prompted with instructions combining textual adversarial samples. In this paper, drawing inspiration from recent works that LLMs are sensitive to the design of the instructions, we utilize instructions in code style, which are more structural and less ambiguous, to replace typically natural language instructions. Through this conversion, we provide LLMs with more precise instructions and strengthen the robustness of LLMs. Moreover, under few-shot scenarios, we propose a novel method to compose in-context demonstrations using both clean and adversarial samples (\textit{adversarial context method}) to further boost the robustness of the LLMs. Experiments on eight robustness datasets show that our method consistently outperforms prompting LLMs with natural language instructions. For example, with gpt-3.5-turbo, our method achieves an improvement of 5.68\% in test set accuracy and a reduction of 5.66 points in Attack Success Rate (ASR).




Abstract:Despite the impressive capabilities of large language models (LLMs), their performance on information extraction tasks is still not entirely satisfactory. However, their remarkable rewriting capabilities and extensive world knowledge offer valuable insights to improve these tasks. In this paper, we propose $LLM-DA$, a novel data augmentation technique based on LLMs for the few-shot NER task. To overcome the limitations of existing data augmentation methods that compromise semantic integrity and address the uncertainty inherent in LLM-generated text, we leverage the distinctive characteristics of the NER task by augmenting the original data at both the contextual and entity levels. Our approach involves employing 14 contextual rewriting strategies, designing entity replacements of the same type, and incorporating noise injection to enhance robustness. Extensive experiments demonstrate the effectiveness of our approach in enhancing NER model performance with limited data. Furthermore, additional analyses provide further evidence supporting the assertion that the quality of the data we generate surpasses that of other existing methods.
Abstract:Domain adaption has been widely adapted for cross-domain sentiment analysis to transfer knowledge from the source domain to the target domain. Whereas, most methods are proposed under the assumption that the target (test) domain is known, making them fail to generalize well on unknown test data that is not always available in practice. In this paper, we focus on the problem of domain generalization for cross-domain sentiment analysis. Specifically, we propose a backdoor adjustment-based causal model to disentangle the domain-specific and domain-invariant representations that play essential roles in tackling domain shift. First, we rethink the cross-domain sentiment analysis task in a causal view to model the causal-and-effect relationships among different variables. Then, to learn an invariant feature representation, we remove the effect of domain confounders (e.g., domain knowledge) using the backdoor adjustment. A series of experiments over many homologous and diverse datasets show the great performance and robustness of our model by comparing it with the state-of-the-art domain generalization baselines.




Abstract:Large Language Models (LLMs) have demonstrated considerable cross-lingual alignment and generalization ability. Current research primarily focuses on improving LLMs' cross-lingual generalization capabilities. However, there is still a lack of research on the intrinsic mechanisms of how LLMs achieve cross-lingual alignment. From the perspective of region partitioning, this paper conducts several investigations on the linguistic competence of LLMs. We discover a core region in LLMs that corresponds to linguistic competence, accounting for approximately 1% of the total model parameters. Removing this core region by setting parameters to zero results in a significant performance decrease across 30 different languages. Furthermore, this core region exhibits significant dimensional dependency, perturbations to even a single parameter on specific dimensions leading to a loss of linguistic competence. Moreover, we discover that distinct regions exist for different monolingual families, and disruption to these specific regions substantially reduces the LLMs' proficiency in those corresponding languages. Our research also indicates that freezing the core linguistic region during further pre-training can mitigate the issue of catastrophic forgetting (CF), a common occurrence observed during further pre-training of LLMs. Overall, exploring the LLMs' functional regions provides insights into the foundation of their intelligence.




Abstract:The growth of social media, characterized by its multimodal nature, has led to the emergence of diverse phenomena and challenges, which calls for an effective approach to uniformly solve automated tasks. The powerful Large Vision Language Models make it possible to handle a variety of tasks simultaneously, but even with carefully designed prompting methods, the general domain models often fall short in aligning with the unique speaking style and context of social media tasks. In this paper, we introduce a Large Vision Language Model for Social Media Processing (SoMeLVLM), which is a cognitive framework equipped with five key capabilities including knowledge & comprehension, application, analysis, evaluation, and creation. SoMeLVLM is designed to understand and generate realistic social media behavior. We have developed a 654k multimodal social media instruction-tuning dataset to support our cognitive framework and fine-tune our model. Our experiments demonstrate that SoMeLVLM achieves state-of-the-art performance in multiple social media tasks. Further analysis shows its significant advantages over baselines in terms of cognitive abilities.
Abstract:This paper presents a benchmark self-evolving framework to dynamically evaluate rapidly advancing Large Language Models (LLMs), aiming for a more accurate assessment of their capabilities and limitations. We utilize a multi-agent system to manipulate the context or question of original instances, reframing new evolving instances with high confidence that dynamically extend existing benchmarks. Towards a more scalable, robust and fine-grained evaluation, we implement six reframing operations to construct evolving instances testing LLMs against diverse queries, data noise and probing their problem-solving sub-abilities. With this framework, we extend benchmark datasets of four tasks. Experimental results show a general performance decline in most LLMs against their original results. This decline under our scalable and robust evaluations, alongside our fine-grained evaluation, more accurately reflect models' capabilities. Besides, our framework widens performance discrepancies both between different models and within the same model across various tasks, facilitating more informed model selection for specific tasks (Code and data are available at https://github.com/NanshineLoong/Self-Evolving-Benchmark).




Abstract:Large language models (LLMs) have demonstrated impressive performance in understanding language and executing complex reasoning tasks. However, LLMs with long context windows have been notorious for their expensive training costs and high inference latency. Even the most advanced models such as GPT-4 and Claude2 often make mistakes when processing inputs of over $100k$ tokens, a phenomenon also known as \textit{lost in the middle}. In this paper, we propose \textsc{LongAgent}, a method based on multi-agent collaboration, which scales LLMs (e.g., LLaMA) to a context of 128K and demonstrates potential superiority in long-text processing compared to GPT-4. In \textsc{LongAgent}, a leader is responsible for understanding user intent and directing team members to acquire information from documents. Due to members' hallucinations, it is non-trivial for a leader to obtain accurate information from the responses of dozens to hundreds of members. To address this, we develop an \textit{inter-member communication} mechanism to resolve response conflicts caused by hallucinations through information sharing. Our experimental results indicate that \textsc{LongAgent} offers a promising alternative for long-text processing. The agent team instantiated with LLaMA-7B achieves significant improvements in tasks such as 128k-long text retrieval, multi-hop question answering, compared to GPT-4.
Abstract:In the realm of Large Language Models (LLMs), users commonly employ diverse decoding strategies and adjust hyperparameters to control the generated text. However, a critical question emerges: Are LLMs conscious of the existence of these decoding strategies and capable of regulating themselves? The current decoding generation process often relies on empirical and heuristic manual adjustments to hyperparameters based on types of tasks and demands. However, this process is typically cumbersome, and the decoding hyperparameters may not always be optimal for each sample. To address the aforementioned challenges, we propose a novel text generation paradigm termed Hyperparameter Aware Generation (HAG). By leveraging hyperparameter-aware instruction tuning, the LLM autonomously determines the optimal decoding strategy and configs based on the input samples, enabling self-regulation. Our approach eliminates the need for extensive manual tuning, offering a more autonomous, self-regulate model behavior. Experimental results spanning six datasets across reasoning, creativity, translation, and mathematics tasks demonstrate that hyperparameter-aware instruction tuning empowers the LLMs to self-regulate the decoding strategy and hyperparameter. HAG extends the current paradigm in the text generation process, highlighting the feasibility of endowing the LLMs with self-regulate decoding strategies.




Abstract:Tool learning is widely acknowledged as a foundational approach or deploying large language models (LLMs) in real-world scenarios. While current research primarily emphasizes leveraging tools to augment LLMs, it frequently neglects emerging safety considerations tied to their application. To fill this gap, we present $ToolSword$, a comprehensive framework dedicated to meticulously investigating safety issues linked to LLMs in tool learning. Specifically, ToolSword delineates six safety scenarios for LLMs in tool learning, encompassing $malicious$ $queries$ and $jailbreak$ $attacks$ in the input stage, $noisy$ $misdirection$ and $risky$ $cues$ in the execution stage, and $harmful$ $feedback$ and $error$ $conflicts$ in the output stage. Experiments conducted on 11 open-source and closed-source LLMs reveal enduring safety challenges in tool learning, such as handling harmful queries, employing risky tools, and delivering detrimental feedback, which even GPT-4 is susceptible to. Moreover, we conduct further studies with the aim of fostering research on tool learning safety. The data is released in https://github.com/Junjie-Ye/ToolSword.