Fudan University
Abstract:Large language models (LLMs) alignment ensures model behaviors reflect human value. Existing alignment strategies primarily follow two paths: one assumes a universal value set for a unified goal (i.e., one-size-fits-all), while the other treats every individual as unique to customize models (i.e., individual-level). However, assuming a monolithic value space marginalizes minority norms, while tailoring individual models is prohibitively expensive. Recognizing that human society is organized into social clusters with high intra-group value alignment, we propose community-level alignment as a "middle ground". Practically, we introduce CommunityBench, the first large-scale benchmark for community-level alignment evaluation, featuring four tasks grounded in Common Identity and Common Bond theory. With CommunityBench, we conduct a comprehensive evaluation of various foundation models on CommunityBench, revealing that current LLMs exhibit limited capacity to model community-specific preferences. Furthermore, we investigate the potential of community-level alignment in facilitating individual modeling, providing a promising direction for scalable and pluralistic alignment.
Abstract:As users increasingly expect LLMs to align with their preferences, personalized information becomes valuable. However, personalized information can be a double-edged sword: it can improve interaction but may compromise objectivity and factual correctness, especially when it is misaligned with the question. To alleviate this problem, we propose PersonaDual, a framework that supports both general-purpose objective reasoning and personalized reasoning in a single model, and adaptively switches modes based on context. PersonaDual is first trained with SFT to learn two reasoning patterns, and then further optimized via reinforcement learning with our proposed DualGRPO to improve mode selection. Experiments on objective and personalized benchmarks show that PersonaDual preserves the benefits of personalization while reducing interference, achieving near interference-free performance and better leveraging helpful personalized signals to improve objective problem-solving.
Abstract:Although learning-based vision-and-language navigation (VLN) agents can learn spatial knowledge implicitly from large-scale training data, zero-shot VLN agents lack this process, relying primarily on local observations for navigation, which leads to inefficient exploration and a significant performance gap. To deal with the problem, we consider a zero-shot VLN setting that agents are allowed to fully explore the environment before task execution. Then, we construct the Spatial Scene Graph (SSG) to explicitly capture global spatial structure and semantics in the explored environment. Based on the SSG, we introduce SpatialNav, a zero-shot VLN agent that integrates an agent-centric spatial map, a compass-aligned visual representation, and a remote object localization strategy for efficient navigation. Comprehensive experiments in both discrete and continuous environments demonstrate that SpatialNav significantly outperforms existing zero-shot agents and clearly narrows the gap with state-of-the-art learning-based methods. Such results highlight the importance of global spatial representations for generalizable navigation.
Abstract:Medical consultations are intrinsically speech-centric. However, most prior works focus on long-text-based interactions, which are cumbersome and patient-unfriendly. Recent advances in speech language models (SpeechLMs) have enabled more natural speech-based interaction, yet the scarcity of medical speech data and the inefficiency of directly fine-tuning on speech data jointly hinder the adoption of SpeechLMs in medical consultation. In this paper, we propose SpeechMedAssist, a SpeechLM natively capable of conducting speech-based multi-turn interactions with patients. By exploiting the architectural properties of SpeechLMs, we decouple the conventional one-stage training into a two-stage paradigm consisting of (1) Knowledge & Capability Injection via Text and (2) Modality Re-alignment with Limited Speech Data, thereby reducing the requirement for medical speech data to only 10k synthesized samples. To evaluate SpeechLMs for medical consultation scenarios, we design a benchmark comprising both single-turn question answering and multi-turn simulated interactions. Experimental results show that our model outperforms all baselines in both effectiveness and robustness in most evaluation settings.
Abstract:Large Reasoning Models (LRMs) have demonstrated impressive performance on complex tasks, including logical puzzle games that require deriving solutions satisfying all constraints. However, whether they can flexibly apply appropriate rules to varying conditions, particularly when faced with non-canonical game variants, remains an open question. Existing corpora focus on popular puzzles like 9x9 Sudoku, risking overfitting to canonical formats and memorization of solution patterns, which can mask deficiencies in understanding novel rules or adapting strategies to new variants. To address this, we introduce HardcoreLogic, a challenging benchmark of over 5,000 puzzles across 10 games, designed to test the robustness of LRMs on the "long-tail" of logical games. HardcoreLogic systematically transforms canonical puzzles through three dimensions: Increased Complexity (IC), Uncommon Elements (UE), and Unsolvable Puzzles (UP), reducing reliance on shortcut memorization. Evaluations on a diverse set of LRMs reveal significant performance drops, even for models achieving top scores on existing benchmarks, indicating heavy reliance on memorized stereotypes. While increased complexity is the dominant source of difficulty, models also struggle with subtle rule variations that do not necessarily increase puzzle difficulty. Our systematic error analysis on solvable and unsolvable puzzles further highlights gaps in genuine reasoning. Overall, HardcoreLogic exposes the limitations of current LRMs and establishes a benchmark for advancing high-level logical reasoning.




Abstract:Reinforcement learning has proven its effectiveness in enhancing the reasoning capabilities of large language models. Recent research efforts have progressively extended this paradigm to multimodal reasoning tasks. Due to the inherent complexity and diversity of multimodal tasks, especially in semantic content and problem formulations, existing models often exhibit unstable performance across various domains and difficulty levels. To address these limitations, we propose VL-Cogito, an advanced multimodal reasoning model trained via a novel multi-stage Progressive Curriculum Reinforcement Learning (PCuRL) framework. PCuRL systematically guides the model through tasks of gradually increasing difficulty, substantially improving its reasoning abilities across diverse multimodal contexts. The framework introduces two key innovations: (1) an online difficulty soft weighting mechanism, dynamically adjusting training difficulty across successive RL training stages; and (2) a dynamic length reward mechanism, which encourages the model to adaptively regulate its reasoning path length according to task complexity, thus balancing reasoning efficiency with correctness. Experimental evaluations demonstrate that VL-Cogito consistently matches or surpasses existing reasoning-oriented models across mainstream multimodal benchmarks spanning mathematics, science, logic, and general understanding, validating the effectiveness of our approach.




Abstract:Typical large vision-language models (LVLMs) apply autoregressive supervision solely to textual sequences, without fully incorporating the visual modality into the learning process. This results in three key limitations: (1) an inability to utilize images without accompanying captions, (2) the risk that captions omit critical visual details, and (3) the challenge that certain vision-centric content cannot be adequately conveyed through text. As a result, current LVLMs often prioritize vision-to-language alignment while potentially overlooking fine-grained visual information. While some prior works have explored autoregressive image generation, effectively leveraging autoregressive visual supervision to enhance image understanding remains an open challenge. In this paper, we introduce Autoregressive Semantic Visual Reconstruction (ASVR), which enables joint learning of visual and textual modalities within a unified autoregressive framework. We show that autoregressively reconstructing the raw visual appearance of images does not enhance and may even impair multimodal understanding. In contrast, autoregressively reconstructing the semantic representation of images consistently improves comprehension. Notably, we find that even when models are given continuous image features as input, they can effectively reconstruct discrete semantic tokens, resulting in stable and consistent improvements across a wide range of multimodal understanding benchmarks. Our approach delivers significant performance gains across varying data scales (556k-2M) and types of LLM bacbones. Specifically, ASVR improves LLaVA-1.5 by 5% in average scores across 14 multimodal benchmarks. The code is available at https://github.com/AlenjandroWang/ASVR.
Abstract:Evaluating multimodal large language models (MLLMs) is increasingly expensive, as the growing size and cross-modality complexity of benchmarks demand significant scoring efforts. To tackle with this difficulty, we introduce AutoJudger, an agent-driven framework for efficient and adaptive benchmarking of MLLMs that tackles this escalating cost. AutoJudger employs the Item Response Theory (IRT) to estimate the question difficulty and an autonomous evaluation agent to dynamically select the most informative test questions based on the model's real-time performance. Specifically, AutoJudger incorporates two pivotal components: a semantic-aware retrieval mechanism to ensure that selected questions cover diverse and challenging scenarios across both vision and language modalities, and a dynamic memory that maintains contextual statistics of previously evaluated questions to guide coherent and globally informed question selection throughout the evaluation process. Extensive experiments on four representative multimodal benchmarks demonstrate that our adaptive framework dramatically reduces evaluation expenses, i.e. AutoJudger uses only 4% of the data to achieve over 90% ranking accuracy with the full benchmark evaluation on MMT-Bench.




Abstract:Large vision-language models (LVLMs) remain vulnerable to hallucination, often generating content misaligned with visual inputs. While recent approaches advance multi-modal Direct Preference Optimization (DPO) to mitigate hallucination, they typically rely on predefined or randomly edited negative samples that fail to reflect actual model errors, limiting training efficacy. In this work, we propose an Online Vision-language Preference Learning (OViP) framework that dynamically constructs contrastive training data based on the model's own hallucinated outputs. By identifying semantic differences between sampled response pairs and synthesizing negative images using a diffusion model, OViP generates more relevant supervision signals in real time. This failure-driven training enables adaptive alignment of both textual and visual preferences. Moreover, we refine existing evaluation protocols to better capture the trade-off between hallucination suppression and expressiveness. Experiments on hallucination and general benchmarks demonstrate that OViP effectively reduces hallucinations while preserving core multi-modal capabilities.
Abstract:Mixture-of-Experts (MoE) enables efficient scaling of large language models (LLMs) with sparsely activated experts during inference. To effectively deploy large MoE models on memory-constrained devices, many systems introduce *expert offloading* that caches a subset of experts in fast memory, leaving others on slow memory to run on CPU or load on demand. While some research has exploited the locality of expert activations, where consecutive tokens activate similar experts, the degree of this **local routing consistency** varies across models and remains understudied. In this paper, we propose two metrics to measure local routing consistency of MoE models: (1) **Segment Routing Best Performance (SRP)**, which evaluates how well a fixed group of experts can cover the needs of a segment of tokens, and (2) **Segment Cache Best Hit Rate (SCH)**, which measures the optimal segment-level cache hit rate under a given cache size limit. We analyzed 20 MoE LLMs with diverse sizes and architectures and found that models that apply MoE on every layer and do not use shared experts exhibit the highest local routing consistency. We further showed that domain-specialized experts contribute more to routing consistency than vocabulary-specialized ones, and that most models can balance between cache effectiveness and efficiency with cache sizes approximately 2x the active experts. These findings pave the way for memory-efficient MoE design and deployment without compromising inference speed. We publish the code for replicating experiments at https://github.com/ljcleo/moe-lrc .