Abstract:Grounding the reasoning ability of large language models (LLMs) for embodied tasks is challenging due to the complexity of the physical world. Especially, LLM planning for multi-agent collaboration requires communication of agents or credit assignment as the feedback to re-adjust the proposed plans and achieve effective coordination. However, existing methods that overly rely on physical verification or self-reflection suffer from excessive and inefficient querying of LLMs. In this paper, we propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans. Specifically, we perform critic regression to learn a sequential advantage function from LLM-planned data, and then treat the LLM planner as an optimizer to generate actions that maximize the advantage function. It endows the LLM with the foresight to discern whether the action contributes to accomplishing the final task. We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems. Experiments on Overcooked-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents and query rounds of LLMs, demonstrating its high efficiency for grounding LLMs. More results are given at \url{https://read-llm.github.io/}.
Abstract:This paper introduces MMTryon, a multi-modal multi-reference VIrtual Try-ON (VITON) framework, which can generate high-quality compositional try-on results by taking as inputs a text instruction and multiple garment images. Our MMTryon mainly addresses two problems overlooked in prior literature: 1) Support of multiple try-on items and dressing styleExisting methods are commonly designed for single-item try-on tasks (e.g., upper/lower garments, dresses) and fall short on customizing dressing styles (e.g., zipped/unzipped, tuck-in/tuck-out, etc.) 2) Segmentation Dependency. They further heavily rely on category-specific segmentation models to identify the replacement regions, with segmentation errors directly leading to significant artifacts in the try-on results. For the first issue, our MMTryon introduces a novel multi-modality and multi-reference attention mechanism to combine the garment information from reference images and dressing-style information from text instructions. Besides, to remove the segmentation dependency, MMTryon uses a parsing-free garment encoder and leverages a novel scalable data generation pipeline to convert existing VITON datasets to a form that allows MMTryon to be trained without requiring any explicit segmentation. Extensive experiments on high-resolution benchmarks and in-the-wild test sets demonstrate MMTryon's superiority over existing SOTA methods both qualitatively and quantitatively. Besides, MMTryon's impressive performance on multi-items and style-controllable virtual try-on scenarios and its ability to try on any outfit in a large variety of scenarios from any source image, opens up a new avenue for future investigation in the fashion community.
Abstract:With the success of large language models, generative retrieval has emerged as a new retrieval technique for recommendation. It can be divided into two stages: the first stage involves constructing discrete Codes (i.e., codes), and the second stage involves decoding the code sequentially via the transformer architecture. Current methods often construct item semantic codes by reconstructing based quantization on item textual representation, but they fail to capture item discrepancy that is essential in modeling item relationships in recommendation sytems. In this paper, we propose to construct the code representation of items by simultaneously considering both item relationships and semantic information. Specifically, we employ a pre-trained language model to extract item's textual description and translate it into item's embedding. Then we propose to enhance the encoder-decoder based RQVAE model with contrastive objectives to learn item code. To be specific, we employ the embeddings generated by the decoder from the samples themselves as positive instances and those from other samples as negative instances. Thus we effectively enhance the item discrepancy across all items, better preserving the item neighbourhood. Finally, we train and test semantic code with with generative retrieval on a sequential recommendation model. Our experiments demonstrate that our method improves NDCG@5 with 43.76% on the MIND dataset and Recall@10 with 80.95% on the Office dataset compared to the previous baselines.
Abstract:Click-through rate (CTR) prediction tasks play a pivotal role in real-world applications, particularly in recommendation systems and online advertising. A significant research branch in this domain focuses on user behavior modeling. Current research predominantly centers on modeling co-occurrence relationships between the target item and items previously interacted with by users in their historical data. However, this focus neglects the intricate modeling of user behavior patterns. In reality, the abundance of user interaction records encompasses diverse behavior patterns, indicative of a spectrum of habitual paradigms. These patterns harbor substantial potential to significantly enhance CTR prediction performance. To harness the informational potential within user behavior patterns, we extend Target Attention (TA) to Target Pattern Attention (TPA) to model pattern-level dependencies. Furthermore, three critical challenges demand attention: the inclusion of unrelated items within behavior patterns, data sparsity in behavior patterns, and computational complexity arising from numerous patterns. To address these challenges, we introduce the Deep Pattern Network (DPN), designed to comprehensively leverage information from user behavior patterns. DPN efficiently retrieves target-related user behavior patterns using a target-aware attention mechanism. Additionally, it contributes to refining user behavior patterns through a pre-training paradigm based on self-supervised learning while promoting dependency learning within sparse patterns. Our comprehensive experiments, conducted across three public datasets, substantiate the superior performance and broad compatibility of DPN.
Abstract:Different types of staining highlight different structures in organs, thereby assisting in diagnosis. However, due to the impossibility of repeated staining, we cannot obtain different types of stained slides of the same tissue area. Translating the slide that is easy to obtain (e.g., H&E) to slides of staining types difficult to obtain (e.g., MT, PAS) is a promising way to solve this problem. However, some regions are closely connected to other regions, and to maintain this connection, they often have complex structures and are difficult to translate, which may lead to wrong translations. In this paper, we propose the Attention-Based Varifocal Generative Adversarial Network (AV-GAN), which solves multiple problems in pathologic image translation tasks, such as uneven translation difficulty in different regions, mutual interference of multiple resolution information, and nuclear deformation. Specifically, we develop an Attention-Based Key Region Selection Module, which can attend to regions with higher translation difficulty. We then develop a Varifocal Module to translate these regions at multiple resolutions. Experimental results show that our proposed AV-GAN outperforms existing image translation methods with two virtual kidney tissue staining tasks and improves FID values by 15.9 and 4.16 respectively in the H&E-MT and H&E-PAS tasks.
Abstract:We propose Lodge, a network capable of generating extremely long dance sequences conditioned on given music. We design Lodge as a two-stage coarse to fine diffusion architecture, and propose the characteristic dance primitives that possess significant expressiveness as intermediate representations between two diffusion models. The first stage is global diffusion, which focuses on comprehending the coarse-level music-dance correlation and production characteristic dance primitives. In contrast, the second-stage is the local diffusion, which parallelly generates detailed motion sequences under the guidance of the dance primitives and choreographic rules. In addition, we propose a Foot Refine Block to optimize the contact between the feet and the ground, enhancing the physical realism of the motion. Our approach can parallelly generate dance sequences of extremely long length, striking a balance between global choreographic patterns and local motion quality and expressiveness. Extensive experiments validate the efficacy of our method.
Abstract:Oriented object detection, an emerging task in recent years, aims to identify and locate objects across varied orientations. This requires the detector to accurately capture the orientation information, which varies significantly within and across images. Despite the existing substantial efforts, simultaneously ensuring model effectiveness and parameter efficiency remains challenging in this scenario. In this paper, we propose a lightweight yet effective Group-wise Rotating and Attention (GRA) module to replace the convolution operations in backbone networks for oriented object detection. GRA can adaptively capture fine-grained features of objects with diverse orientations, comprising two key components: Group-wise Rotating and Group-wise Attention. Group-wise Rotating first divides the convolution kernel into groups, where each group extracts different object features by rotating at a specific angle according to the object orientation. Subsequently, Group-wise Attention is employed to adaptively enhance the object-related regions in the feature. The collaborative effort of these components enables GRA to effectively capture the various orientation information while maintaining parameter efficiency. Extensive experimental results demonstrate the superiority of our method. For example, GRA achieves a new state-of-the-art (SOTA) on the DOTA-v2.0 benchmark, while saving the parameters by nearly 50% compared to the previous SOTA method. Code will be released.
Abstract:Storing intermediate frame segmentations as memory for long-range context modeling, spatial-temporal memory-based methods have recently showcased impressive results in semi-supervised video object segmentation (SVOS). However, these methods face two key limitations: 1) relying on non-local pixel-level matching to read memory, resulting in noisy retrieved features for segmentation; 2) segmenting each object independently without interaction. These shortcomings make the memory-based methods struggle in similar object and multi-object segmentation. To address these issues, we propose a query modulation method, termed QMVOS. This method summarizes object features into dynamic queries and then treats them as dynamic filters for mask prediction, thereby providing high-level descriptions and object-level perception for the model. Efficient and effective multi-object interactions are realized through inter-query attention. Extensive experiments demonstrate that our method can bring significant improvements to the memory-based SVOS method and achieve competitive performance on standard SVOS benchmarks. The code is available at https://github.com/zht8506/QMVOS.
Abstract:Gesture synthesis is a vital realm of human-computer interaction, with wide-ranging applications across various fields like film, robotics, and virtual reality. Recent advancements have utilized the diffusion model and attention mechanisms to improve gesture synthesis. However, due to the high computational complexity of these techniques, generating long and diverse sequences with low latency remains a challenge. We explore the potential of state space models (SSMs) to address the challenge, implementing a two-stage modeling strategy with discrete motion priors to enhance the quality of gestures. Leveraging the foundational Mamba block, we introduce MambaTalk, enhancing gesture diversity and rhythm through multimodal integration. Extensive experiments demonstrate that our method matches or exceeds the performance of state-of-the-art models.
Abstract:Despite recent advances in image-to-video generation, better controllability and local animation are less explored. Most existing image-to-video methods are not locally aware and tend to move the entire scene. However, human artists may need to control the movement of different objects or regions. Additionally, current I2V methods require users not only to describe the target motion but also to provide redundant detailed descriptions of frame contents. These two issues hinder the practical utilization of current I2V tools. In this paper, we propose a practical framework, named Follow-Your-Click, to achieve image animation with a simple user click (for specifying what to move) and a short motion prompt (for specifying how to move). Technically, we propose the first-frame masking strategy, which significantly improves the video generation quality, and a motion-augmented module equipped with a short motion prompt dataset to improve the short prompt following abilities of our model. To further control the motion speed, we propose flow-based motion magnitude control to control the speed of target movement more precisely. Our framework has simpler yet precise user control and better generation performance than previous methods. Extensive experiments compared with 7 baselines, including both commercial tools and research methods on 8 metrics, suggest the superiority of our approach. Project Page: https://follow-your-click.github.io/