Multi-domain learning (MDL) aims to train a model with minimal average risk across multiple overlapping but non-identical domains. To tackle the challenges of dataset bias and domain domination, numerous MDL approaches have been proposed from the perspectives of seeking commonalities by aligning distributions to reduce domain gap or reserving differences by implementing domain-specific towers, gates, and even experts. MDL models are becoming more and more complex with sophisticated network architectures or loss functions, introducing extra parameters and enlarging computation costs. In this paper, we propose a frustratingly easy and hyperparameter-free multi-domain learning method named Decoupled Training(D-Train). D-Train is a tri-phase general-to-specific training strategy that first pre-trains on all domains to warm up a root model, then post-trains on each domain by splitting into multi heads, and finally fine-tunes the heads by fixing the backbone, enabling decouple training to achieve domain independence. Despite its extraordinary simplicity and efficiency, D-Train performs remarkably well in extensive evaluations of various datasets from standard benchmarks to applications of satellite imagery and recommender systems.
Localizing root causes for multi-dimensional data is critical to ensure online service systems' reliability. When a fault occurs, only the measure values within specific attribute combinations are abnormal. Such attribute combinations are substantial clues to the underlying root causes and thus are called root causes of multidimensional data. This paper proposes a generic and robust root cause localization approach for multi-dimensional data, PSqueeze. We propose a generic property of root cause for multi-dimensional data, generalized ripple effect (GRE). Based on it, we propose a novel probabilistic cluster method and a robust heuristic search method. Moreover, we identify the importance of determining external root causes and propose an effective method for the first time in literature. Our experiments on two real-world datasets with 5400 faults show that the F1-score of PSqueeze outperforms baselines by 32.89%, while the localization time is around 10 seconds across all cases. The F1-score in determining external root causes of PSqueeze achieves 0.90. Furthermore, case studies in several production systems demonstrate that PSqueeze is helpful to fault diagnosis in the real world.
In Click-through rate (CTR) prediction models, a user's interest is usually represented as a fixed-length vector based on her history behaviors. Recently, several methods are proposed to learn an attentive weight for each user behavior and conduct weighted sum pooling. However, these methods only manually select several fields from the target item side as the query to interact with the behaviors, neglecting the other target item fields, as well as user and context fields. Directly including all these fields in the attention may introduce noise and deteriorate the performance. In this paper, we propose a novel model named AutoAttention, which includes all item/user/context side fields as the query, and assigns a learnable weight for each field pair between behavior fields and query fields. Pruning on these field pairs via these learnable weights lead to automatic field pair selection, so as to identify and remove noisy field pairs. Though including more fields, the computation cost of AutoAttention is still low due to using a simple attention function and field pair selection. Extensive experiments on the public dataset and Tencent's production dataset demonstrate the effectiveness of the proposed approach.
Multi-task learning has been widely used in real-world recommenders to predict different types of user feedback. Most prior works focus on designing network architectures for bottom layers as a means to share the knowledge about input features representations. However, since they adopt task-specific binary labels as supervised signals for training, the knowledge about how to accurately rank items is not fully shared across tasks. In this paper, we aim to enhance knowledge transfer for multi-task personalized recommendat optimization objectives. We propose a Cross-Task Knowledge Distillation (CrossDistil) framework in recommendation, which consists of three procedures. 1) Task Augmentation: We introduce auxiliary tasks with quadruplet loss functions to capture cross-task fine-grained ranking information, which could avoid task conflicts by preserving the cross-task consistent knowledge; 2) Knowledge Distillation: We design a knowledge distillation approach based on augmented tasks for sharing ranking knowledge, where tasks' predictions are aligned with a calibration process; 3) Model Training: Teacher and student models are trained in an end-to-end manner, with a novel error correction mechanism to speed up model training and improve knowledge quality. Comprehensive experiments on a public dataset and our production dataset are carried out to verify the effectiveness of CrossDistil as well as the necessity of its key components.
The delayed feedback problem is one of the imperative challenges in online advertising, which is caused by the highly diversified feedback delay of a conversion varying from a few minutes to several days. It is hard to design an appropriate online learning system under these non-identical delay for different types of ads and users. In this paper, we propose to tackle the delayed feedback problem in online advertising by "Following the Prophet" (FTP for short). The key insight is that, if the feedback came instantly for all the logged samples, we could get a model without delayed feedback, namely the "prophet". Although the prophet cannot be obtained during online learning, we show that we could predict the prophet's predictions by an aggregation policy on top of a set of multi-task predictions, where each task captures the feedback patterns of different periods. We propose the objective and optimization approach for the policy, and use the logged data to imitate the prophet. Extensive experiments on three real-world advertising datasets show that our method outperforms the previous state-of-the-art baselines.
Deep Gaussian processes (DGPs), a hierarchical composition of GP models, have successfully boosted the expressive power of their single-layer counterpart. However, it is impossible to perform exact inference in DGPs, which has motivated the recent development of variational inference-based methods. Unfortunately, either these methods yield a biased posterior belief or it is difficult to evaluate their convergence. This paper introduces a new approach for specifying flexible, arbitrarily complex, and scalable approximate posterior distributions. The posterior distribution is constructed through a normalizing flow (NF) which transforms a simple initial probability into a more complex one through a sequence of invertible transformations. Moreover, a novel convolutional normalizing flow (CNF) is developed to improve the time efficiency and capture dependency between layers. Empirical evaluation shows that CNF DGP outperforms the state-of-the-art approximation methods for DGPs.
Generative Adversarial Imitation Learning (GAIL) is an efficient way to learn sequential control strategies from demonstration. Adversarial Inverse Reinforcement Learning (AIRL) is similar to GAIL but also learns a reward function at the same time and has better training stability. In previous work, however, AIRL has mostly been demonstrated on robotic control in artificial environments. In this paper, we apply AIRL to a practical and challenging problem -- the decision-making in autonomous driving, and also augment AIRL with a semantic reward to improve its performance. We use four metrics to evaluate its learning performance in a simulated driving environment. Results show that the vehicle agent can learn decent decision-making behaviors from scratch, and can reach a level of performance comparable with that of an expert. Additionally, the comparison with GAIL shows that AIRL converges faster, achieves better and more stable performance than GAIL.
In machine learning, it is observed that probabilistic predictions sometimes disagree with averaged actual outcomes on certain subsets of data. This is also known as miscalibration that is responsible for unreliability and unfairness of practical machine learning systems. In this paper, we put forward an evaluation metric for calibration, coined field-level calibration error, that measures bias in predictions over the input fields that the decision maker concerns. We show that existing calibration methods perform poorly under our new metric. Specifically, after learning a calibration mapping over the validation dataset, existing methods have limited improvements in our error metric and completely fail to improve other non-calibration metrics such as the AUC score. We propose Neural Calibration, a new calibration method, which learns to calibrate by making full use of all input information over the validation set. We test our method on five large-scale real-world datasets. The results show that Neural Calibration significantly improves against uncalibrated predictions in all well-known metrics such as the negative log-likelihood, the Brier score, the AUC score, as well as our proposed field-level calibration error.