College of Artificial Intelligence and Automation, Hohai University
Abstract:Cell-free Integrated Sensing and Communication (ISAC) aims to revolutionize 6th Generation (6G) networks. By combining distributed access points with ISAC capabilities, it boosts spectral efficiency, situational awareness, and communication reliability. Channel estimation is a critical step in cell-free ISAC systems to ensure reliable communication, but its performance is usually limited by challenges such as pilot contamination and noisy channel estimates. This paper presents a novel framework leveraging sensing information as a key input within a Conditional Denoising Diffusion Model (CDDM). In this framework, we integrate CDDM with a Multimodal Transformer (MMT) to enhance channel estimation in ISAC-enabled cell-free systems. The MMT encoder effectively captures inter-modal relationships between sensing and location data, enabling the CDDM to iteratively denoise and refine channel estimates. Simulation results demonstrate that the proposed approach achieves significant performance gains. As compared with Least Squares (LS) and Minimum Mean Squared Error (MMSE) estimators, the proposed model achieves normalized mean squared error (NMSE) improvements of 8 dB and 9 dB, respectively. Moreover, we achieve a 27.8% NMSE improvement compared to the traditional denoising diffusion model (TDDM), which does not incorporate sensing channel information. Additionally, the model exhibits higher robustness against pilot contamination and maintains high accuracy under challenging conditions, such as low signal-to-noise ratios (SNRs). According to the simulation results, the model performs well for users near sensing targets by leveraging the correlation between sensing and communication channels.
Abstract:We present DexUMI - a data collection and policy learning framework that uses the human hand as the natural interface to transfer dexterous manipulation skills to various robot hands. DexUMI includes hardware and software adaptations to minimize the embodiment gap between the human hand and various robot hands. The hardware adaptation bridges the kinematics gap using a wearable hand exoskeleton. It allows direct haptic feedback in manipulation data collection and adapts human motion to feasible robot hand motion. The software adaptation bridges the visual gap by replacing the human hand in video data with high-fidelity robot hand inpainting. We demonstrate DexUMI's capabilities through comprehensive real-world experiments on two different dexterous robot hand hardware platforms, achieving an average task success rate of 86%.
Abstract:Automated Essay Scoring (AES) is crucial for modern education, particularly with the increasing prevalence of multimodal assessments. However, traditional AES methods struggle with evaluation generalizability and multimodal perception, while even recent Multimodal Large Language Model (MLLM)-based approaches can produce hallucinated justifications and scores misaligned with human judgment. To address the limitations, we introduce CAFES, the first collaborative multi-agent framework specifically designed for AES. It orchestrates three specialized agents: an Initial Scorer for rapid, trait-specific evaluations; a Feedback Pool Manager to aggregate detailed, evidence-grounded strengths; and a Reflective Scorer that iteratively refines scores based on this feedback to enhance human alignment. Extensive experiments, using state-of-the-art MLLMs, achieve an average relative improvement of 21% in Quadratic Weighted Kappa (QWK) against ground truth, especially for grammatical and lexical diversity. Our proposed CAFES framework paves the way for an intelligent multimodal AES system. The code will be available upon acceptance.
Abstract:To enhance the reliability and credibility of graph neural networks (GNNs) and improve the transparency of their decision logic, a new field of explainability of GNNs (XGNN) has emerged. However, two major limitations severely degrade the performance and hinder the generalizability of existing XGNN methods: they (a) fail to capture the complete decision logic of GNNs across diverse distributions in the entire dataset's sample space, and (b) impose strict prerequisites on edge properties and GNN internal accessibility. To address these limitations, we propose OPEN, a novel c\textbf{O}mprehensive and \textbf{P}rerequisite-free \textbf{E}xplainer for G\textbf{N}Ns. OPEN, as the first work in the literature, can infer and partition the entire dataset's sample space into multiple environments, each containing graphs that follow a distinct distribution. OPEN further learns the decision logic of GNNs across different distributions by sampling subgraphs from each environment and analyzing their predictions, thus eliminating the need for strict prerequisites. Experimental results demonstrate that OPEN captures nearly complete decision logic of GNNs, outperforms state-of-the-art methods in fidelity while maintaining similar efficiency, and enhances robustness in real-world scenarios.
Abstract:Positional encoding (PE) is essential for enabling Transformers to model sequential structure. However, the mechanisms by which different PE schemes couple token content and positional information-and how these mechanisms influence model dynamics-remain theoretically underexplored. In this work, we present a unified framework that analyzes PE through the spectral properties of Toeplitz and related matrices derived from attention logits. We show that multiplicative content-position coupling-exemplified by Rotary Positional Encoding (RoPE) via a Hadamard product with a Toeplitz matrix-induces spectral contraction, which theoretically improves optimization stability and efficiency. Guided by this theory, we construct synthetic tasks that contrast content-position dependent and content-position independent settings, and evaluate a range of PE methods. Our experiments reveal strong alignment with theory: RoPE consistently outperforms other methods on position-sensitive tasks and induces "single-head deposit" patterns in early layers, indicating localized positional processing. Further analyses show that modifying the method and timing of PE coupling, such as MLA in Deepseek-V3, can effectively mitigate this concentration. These results establish explicit content-relative mixing with relative-position Toeplitz signals as a key principle for effective PE design and provide new insight into how positional structure is integrated in Transformer architectures.
Abstract:Multimodal medical image fusion plays a crucial role in medical diagnosis by integrating complementary information from different modalities to enhance image readability and clinical applicability. However, existing methods mainly follow computer vision standards for feature extraction and fusion strategy formulation, overlooking the rich semantic information inherent in medical images. To address this limitation, we propose a novel semantic-guided medical image fusion approach that, for the first time, incorporates medical prior knowledge into the fusion process. Specifically, we construct a publicly available multimodal medical image-text dataset, upon which text descriptions generated by BiomedGPT are encoded and semantically aligned with image features in a high-dimensional space via a semantic interaction alignment module. During this process, a cross attention based linear transformation automatically maps the relationship between textual and visual features to facilitate comprehensive learning. The aligned features are then embedded into a text-injection module for further feature-level fusion. Unlike traditional methods, we further generate diagnostic reports from the fused images to assess the preservation of medical information. Additionally, we design a medical semantic loss function to enhance the retention of textual cues from the source images. Experimental results on test datasets demonstrate that the proposed method achieves superior performance in both qualitative and quantitative evaluations while preserving more critical medical information.
Abstract:Federated learning (FL) is a promising technique for learning-based functions in wireless networks, thanks to its distributed implementation capability. On the other hand, distributed learning may increase the risk of exposure to malicious attacks where attacks on a local model may spread to other models by parameter exchange. Meanwhile, such attacks can be hard to detect due to the dynamic wireless environment, especially considering local models can be heterogeneous with non-independent and identically distributed (non-IID) data. Therefore, it is critical to evaluate the effect of malicious attacks and develop advanced defense techniques for FL-enabled wireless networks. In this work, we introduce a federated deep reinforcement learning-based cell sleep control scenario that enhances the energy efficiency of the network. We propose multiple intelligent attacks targeting the learning-based approach and we propose defense methods to mitigate such attacks. In particular, we have designed two attack models, generative adversarial network (GAN)-enhanced model poisoning attack and regularization-based model poisoning attack. As a counteraction, we have proposed two defense schemes, autoencoder-based defense, and knowledge distillation (KD)-enabled defense. The autoencoder-based defense method leverages an autoencoder to identify the malicious participants and only aggregate the parameters of benign local models during the global aggregation, while KD-based defense protects the model from attacks by controlling the knowledge transferred between the global model and local models.
Abstract:The presence of inhomogeneous media between optical sensors and objects leads to distorted imaging outputs, significantly complicating downstream image-processing tasks. A key challenge in image restoration is the lack of high-quality, paired-label images required for training supervised models. In this paper, we introduce the Circular Quasi-Conformal Deturbulence (CQCD) framework, an unsupervised approach for removing image distortions through a circular architecture. This design ensures that the restored image remains both geometrically accurate and visually faithful while preventing the accumulation of incorrect estimations. The circular restoration process involves both forward and inverse mapping. To ensure the bijectivity of the estimated non-rigid deformations, computational quasi-conformal geometry theories are leveraged to regularize the mapping, enforcing its homeomorphic properties. This guarantees a well-defined transformation that preserves structural integrity and prevents unwanted artifacts. Furthermore, tight-frame blocks are integrated to encode distortion-sensitive features for precise recovery. To validate the performance of our approach, we conduct evaluations on various synthetic and real-world captured images. Experimental results demonstrate that CQCD not only outperforms existing state-of-the-art deturbulence methods in terms of image restoration quality but also provides highly accurate deformation field estimations.
Abstract:Purpose: The operating room (OR) is a complex environment where optimizing workflows is critical to reduce costs and improve patient outcomes. The use of computer vision approaches for the automatic recognition of perioperative events enables identification of bottlenecks for OR optimization. However, privacy concerns limit the use of computer vision for automated event detection from OR videos, which makes privacy-preserving approaches needed for OR workflow analysis. Methods: We propose a two-stage pipeline for privacy-preserving OR video analysis and event detection. In the first stage, we leverage vision foundation models for depth estimation and semantic segmentation to generate de-identified Digital Twins (DT) of the OR from conventional RGB videos. In the second stage, we employ the SafeOR model, a fused two-stream approach that processes segmentation masks and depth maps for OR event detection. We evaluate this method on an internal dataset of 38 simulated surgical trials with five event classes. Results: Our results indicate that this DT-based approach to the OR event detection model achieves performance on par and sometimes even better than raw RGB video-based models on detecting OR events. Conclusion: DTs enable privacy-preserving OR workflow analysis, facilitating the sharing of de-identified data across institutions and they can potentially enhance model generalizability by mitigating domain-specific appearance differences.
Abstract:Text-based diffusion models have made significant breakthroughs in generating high-quality images and videos from textual descriptions. However, the lengthy sampling time of the denoising process remains a significant bottleneck in practical applications. Previous methods either ignore the statistical relationships between adjacent steps or rely on attention or feature similarity between them, which often only works with specific network structures. To address this issue, we discover a new statistical relationship in the transition operator between adjacent steps, focusing on the relationship of the outputs from the network. This relationship does not impose any requirements on the network structure. Based on this observation, we propose a novel training-free acceleration method called LTC-Accel, which uses the identified relationship to estimate the current transition operator based on adjacent steps. Due to no specific assumptions regarding the network structure, LTC-Accel is applicable to almost all diffusion-based methods and orthogonal to almost all existing acceleration techniques, making it easy to combine with them. Experimental results demonstrate that LTC-Accel significantly speeds up sampling in text-to-image and text-to-video synthesis while maintaining competitive sample quality. Specifically, LTC-Accel achieves a speedup of 1.67-fold in Stable Diffusion v2 and a speedup of 1.55-fold in video generation models. When combined with distillation models, LTC-Accel achieves a remarkable 10-fold speedup in video generation, allowing real-time generation of more than 16FPS.