Abstract:Large language models (LLMs) have achieved remarkable progress in reasoning tasks, yet the optimal integration of Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) remains a fundamental challenge. Through comprehensive analysis of token distributions, learning dynamics, and integration mechanisms from entropy-based perspectives, we reveal key differences between these paradigms: SFT induces coarse-grained global changes to LLM policy distributions, while RL performs fine-grained selective optimizations, with entropy serving as a critical indicator of training effectiveness. Building on these observations, we propose Supervised Reinforcement Fine-Tuning (SRFT), a single-stage method that unifies both fine-tuning paradigms through entropy-aware weighting mechanisms. Our approach simultaneously applies SFT and RL to directly optimize the LLM using demonstrations and self-exploration rollouts rather than through two-stage sequential methods. Extensive experiments show that SRFT achieves 59.1% average accuracy, outperforming zero-RL methods by 9.0% on five mathematical reasoning benchmarks and 10.9% on three out-of-distribution benchmarks.
Abstract:Learning to optimize (L2O) is an emerging technique to solve mathematical optimization problems with learning-based methods. Although with great success in many real-world scenarios such as wireless communications, computer networks, and electronic design, existing L2O works lack theoretical demonstration of their performance and robustness in out-of-distribution (OOD) scenarios. We address this gap by providing comprehensive proofs. First, we prove a sufficient condition for a robust L2O model with homogeneous convergence rates over all In-Distribution (InD) instances. We assume an L2O model achieves robustness for an InD scenario. Based on our proposed methodology of aligning OOD problems to InD problems, we also demonstrate that the L2O model's convergence rate in OOD scenarios will deteriorate by an equation of the L2O model's input features. Moreover, we propose an L2O model with a concise gradient-only feature construction and a novel gradient-based history modeling method. Numerical simulation demonstrates that our proposed model outperforms the state-of-the-art baseline in both InD and OOD scenarios and achieves up to 10 $\times$ convergence speedup. The code of our method can be found from https://github.com/NetX-lab/GoMathL2O-Official.
Abstract:Modern recurrent architectures, such as xLSTM and Mamba, have recently challenged the Transformer in language modeling. However, their structure constrains their applicability to sequences only or requires processing multi-dimensional data structures, such as images or molecular graphs, in a pre-defined sequential order. In contrast, Multi-Dimensional RNNs (MDRNNs) are well suited for data with a higher level structure, like 2D grids, trees, and directed acyclic graphs (DAGs). In this work, we extend the notion of multi-dimensionality to linear RNNs. We introduce parallelizable Linear Source Transition Mark networks (pLSTMs) using Source, Transition, and Mark gates that act on the line graph of a general DAG. This enables parallelization in analogy to parallel associative scans and the chunkwise-recurrent form of sequential linear RNNs, but for DAGs. For regular grids (1D and 2D), like images, this scheme can be efficiently implemented using einsum operations, concatenations, and padding in logarithmic time. pLSTMs tackle the vanishing/exploding activation/gradient problem for long distances in DAGs via two distinct modes: a directed propagation mode (P-mode) and a diffusive distribution mode (D-mode). To showcase the long-range capabilities of pLSTM, we introduce arrow-pointing extrapolation as a synthetic computer vision task that contains long-distance directional information. We demonstrate that pLSTMs generalize well to larger image sizes, whereas Transformers struggle to extrapolate. On established molecular graph and computer vision benchmarks, pLSTMs also show strong performance. Code and Datasets are available at: https://github.com/ml-jku/plstm_experiments.
Abstract:Troubleshooting performance problems of large model training (LMT) is immensely challenging, due to unprecedented scales of modern GPU clusters, the complexity of software-hardware interactions, and the data intensity of the training process. Existing troubleshooting approaches designed for traditional distributed systems or datacenter networks fall short and can hardly apply to real-world training systems. In this paper, we present PerfTracker, the first online troubleshooting system utilizing fine-grained profiling, to diagnose performance issues of large-scale model training in production. PerfTracker can diagnose performance issues rooted in both hardware (e.g., GPUs and their interconnects) and software (e.g., Python functions and GPU operations). It scales to LMT on modern GPU clusters. PerfTracker effectively summarizes runtime behavior patterns of fine-grained LMT functions via online profiling, and leverages differential observability to localize the root cause with minimal production impact. PerfTracker has been deployed as a production service for large-scale GPU clusters of O(10, 000) GPUs (product homepage https://help.aliyun.com/zh/pai/user-guide/perftracker-online-performance-analysis-diagnostic-tool). It has been used to diagnose a variety of difficult performance issues.
Abstract:We introduce STSBench, a scenario-based framework to benchmark the holistic understanding of vision-language models (VLMs) for autonomous driving. The framework automatically mines pre-defined traffic scenarios from any dataset using ground-truth annotations, provides an intuitive user interface for efficient human verification, and generates multiple-choice questions for model evaluation. Applied to the NuScenes dataset, we present STSnu, the first benchmark that evaluates the spatio-temporal reasoning capabilities of VLMs based on comprehensive 3D perception. Existing benchmarks typically target off-the-shelf or fine-tuned VLMs for images or videos from a single viewpoint and focus on semantic tasks such as object recognition, dense captioning, risk assessment, or scene understanding. In contrast, STSnu evaluates driving expert VLMs for end-to-end driving, operating on videos from multi-view cameras or LiDAR. It specifically assesses their ability to reason about both ego-vehicle actions and complex interactions among traffic participants, a crucial capability for autonomous vehicles. The benchmark features 43 diverse scenarios spanning multiple views and frames, resulting in 971 human-verified multiple-choice questions. A thorough evaluation uncovers critical shortcomings in existing models' ability to reason about fundamental traffic dynamics in complex environments. These findings highlight the urgent need for architectural advances that explicitly model spatio-temporal reasoning. By addressing a core gap in spatio-temporal evaluation, STSBench enables the development of more robust and explainable VLMs for autonomous driving.
Abstract:Point detection has been developed to locate pedestrians in crowded scenes by training a counter through a point-to-point (P2P) supervision scheme. Despite its excellent localization and counting performance, training a point-based counter still faces challenges concerning annotation labor: hundreds to thousands of points are required to annotate a single sample capturing a dense crowd. In this paper, we integrate point-based methods into a semi-supervised counting framework based on pseudo-labeling, enabling the training of a counter with only a few annotated samples supplemented by a large volume of pseudo-labeled data. However, during implementation, the training encounters issues as the confidence for pseudo-labels fails to be propagated to background pixels via the P2P. To tackle this challenge, we devise a point-specific activation map (PSAM) to visually interpret the phenomena occurring during the ill-posed training. Observations from the PSAM suggest that the feature map is excessively activated by the loss for unlabeled data, causing the decoder to misinterpret these over-activations as pedestrians. To mitigate this issue, we propose a point-to-region (P2R) scheme to substitute P2P, which segments out local regions rather than detects a point corresponding to a pedestrian for supervision. Consequently, pixels in the local region can share the same confidence with the corresponding pseudo points. Experimental results in both semi-supervised counting and unsupervised domain adaptation highlight the advantages of our method, illustrating P2R can resolve issues identified in PSAM. The code is available at https://github.com/Elin24/P2RLoss.
Abstract:Leveraging the diffusion transformer (DiT) architecture, models like Sora, CogVideoX and Wan have achieved remarkable progress in text-to-video, image-to-video, and video editing tasks. Despite these advances, diffusion-based video generation remains computationally intensive, especially for high-resolution, long-duration videos. Prior work accelerates its inference by skipping computation, usually at the cost of severe quality degradation. In this paper, we propose SRDiffusion, a novel framework that leverages collaboration between large and small models to reduce inference cost. The large model handles high-noise steps to ensure semantic and motion fidelity (Sketching), while the smaller model refines visual details in low-noise steps (Rendering). Experimental results demonstrate that our method outperforms existing approaches, over 3$\times$ speedup for Wan with nearly no quality loss for VBench, and 2$\times$ speedup for CogVideoX. Our method is introduced as a new direction orthogonal to existing acceleration strategies, offering a practical solution for scalable video generation.
Abstract:Scaling law has been extensively validated in many domains such as natural language processing and computer vision. In the recommendation system, recent work has adopted generative recommendations to achieve scalability, but their generative approaches require abandoning the carefully constructed cross features of traditional recommendation models. We found that this approach significantly degrades model performance, and scaling up cannot compensate for it at all. In this paper, we propose MTGR (Meituan Generative Recommendation) to address this issue. MTGR is modeling based on the HSTU architecture and can retain the original deep learning recommendation model (DLRM) features, including cross features. Additionally, MTGR achieves training and inference acceleration through user-level compression to ensure efficient scaling. We also propose Group-Layer Normalization (GLN) to enhance the performance of encoding within different semantic spaces and the dynamic masking strategy to avoid information leakage. We further optimize the training frameworks, enabling support for our models with 10 to 100 times computational complexity compared to the DLRM, without significant cost increases. MTGR achieved 65x FLOPs for single-sample forward inference compared to the DLRM model, resulting in the largest gain in nearly two years both offline and online. This breakthrough was successfully deployed on Meituan, the world's largest food delivery platform, where it has been handling the main traffic.
Abstract:Visual Instruction Tuning (VisIT) data, commonly available as human-assistant conversations with images interleaved in the human turns, are currently the most widespread vehicle for aligning strong LLMs to understand visual inputs, converting them to strong LMMs. While many VisIT datasets are available, most are constructed using ad-hoc techniques developed independently by different groups. They are often poorly documented, lack reproducible code, and rely on paid, closed-source model APIs such as GPT-4, Gemini, or Claude to convert image metadata (labels) into VisIT instructions. This leads to high costs and makes it challenging to scale, enhance quality, or generate VisIT data for new datasets. In this work, we address these challenges and propose an open and unified recipe and approach,~\textbf{\method}, for converting available metadata to VisIT instructions using open LLMs. Our multi-stage \method features an efficient framework for metadata grouping, quality control, data and prompt organization, and conversation sampling. We show that our approach can reproduce or enhance the data quality of available VisIT datasets when applied to the same image data and metadata sources, improving GPT-4 generated VisIT instructions by ~3\% on average and up to 12\% on individual benchmarks using open models, such as Gemma 2 27B and LLaMa 3.1 70B. Additionally, our approach enables effective performance scaling - both in quantity and quality - by enhancing the resulting LMM performance across a wide range of benchmarks. We also analyze the impact of various factors, including conversation format, base model selection, and resampling strategies. Our code, which supports the reproduction of equal or higher-quality VisIT datasets and facilities future metadata-to-VisIT data conversion for niche domains, is released at https://github.com/jacob-hansen/Instructify.
Abstract:Evaluating and iterating upon recommender systems is crucial, yet traditional A/B testing is resource-intensive, and offline methods struggle with dynamic user-platform interactions. While agent-based simulation is promising, existing platforms often lack a mechanism for user actions to dynamically reshape the environment. To bridge this gap, we introduce RecInter, a novel agent-based simulation platform for recommender systems featuring a robust interaction mechanism. In RecInter platform, simulated user actions (e.g., likes, reviews, purchases) dynamically update item attributes in real-time, and introduced Merchant Agents can reply, fostering a more realistic and evolving ecosystem. High-fidelity simulation is ensured through Multidimensional User Profiling module, Advanced Agent Architecture, and LLM fine-tuned on Chain-of-Thought (CoT) enriched interaction data. Our platform achieves significantly improved simulation credibility and successfully replicates emergent phenomena like Brand Loyalty and the Matthew Effect. Experiments demonstrate that this interaction mechanism is pivotal for simulating realistic system evolution, establishing our platform as a credible testbed for recommender systems research.