Abstract:Troubleshooting performance problems of large model training (LMT) is immensely challenging, due to unprecedented scales of modern GPU clusters, the complexity of software-hardware interactions, and the data intensity of the training process. Existing troubleshooting approaches designed for traditional distributed systems or datacenter networks fall short and can hardly apply to real-world training systems. In this paper, we present PerfTracker, the first online troubleshooting system utilizing fine-grained profiling, to diagnose performance issues of large-scale model training in production. PerfTracker can diagnose performance issues rooted in both hardware (e.g., GPUs and their interconnects) and software (e.g., Python functions and GPU operations). It scales to LMT on modern GPU clusters. PerfTracker effectively summarizes runtime behavior patterns of fine-grained LMT functions via online profiling, and leverages differential observability to localize the root cause with minimal production impact. PerfTracker has been deployed as a production service for large-scale GPU clusters of O(10, 000) GPUs (product homepage https://help.aliyun.com/zh/pai/user-guide/perftracker-online-performance-analysis-diagnostic-tool). It has been used to diagnose a variety of difficult performance issues.
Abstract:Video generation, by leveraging a dynamic visual generation method, pushes the boundaries of Artificial Intelligence Generated Content (AIGC). Video generation presents unique challenges beyond static image generation, requiring both high-quality individual frames and temporal coherence to maintain consistency across the spatiotemporal sequence. Recent works have aimed at addressing the spatiotemporal consistency issue in video generation, while few literature review has been organized from this perspective. This gap hinders a deeper understanding of the underlying mechanisms for high-quality video generation. In this survey, we systematically review the recent advances in video generation, covering five key aspects: foundation models, information representations, generation schemes, post-processing techniques, and evaluation metrics. We particularly focus on their contributions to maintaining spatiotemporal consistency. Finally, we discuss the future directions and challenges in this field, hoping to inspire further efforts to advance the development of video generation.
Abstract:AI alignment is a pivotal issue concerning AI control and safety. It should consider not only value-neutral human preferences but also moral and ethical considerations. In this study, we introduced FairMindSim, which simulates the moral dilemma through a series of unfair scenarios. We used LLM agents to simulate human behavior, ensuring alignment across various stages. To explore the various socioeconomic motivations, which we refer to as beliefs, that drive both humans and LLM agents as bystanders to intervene in unjust situations involving others, and how these beliefs interact to influence individual behavior, we incorporated knowledge from relevant sociological fields and proposed the Belief-Reward Alignment Behavior Evolution Model (BREM) based on the recursive reward model (RRM). Our findings indicate that, behaviorally, GPT-4o exhibits a stronger sense of social justice, while humans display a richer range of emotions. Additionally, we discussed the potential impact of emotions on behavior. This study provides a theoretical foundation for applications in aligning LLMs with altruistic values.