Abstract:We present SwingArena, a competitive evaluation framework for Large Language Models (LLMs) that closely mirrors real-world software development workflows. Unlike traditional static benchmarks, SwingArena models the collaborative process of software iteration by pairing LLMs as submitters, who generate patches, and reviewers, who create test cases and verify the patches through continuous integration (CI) pipelines. To support these interactive evaluations, we introduce a retrieval-augmented code generation (RACG) module that efficiently handles long-context challenges by providing syntactically and semantically relevant code snippets from large codebases, supporting multiple programming languages (C++, Python, Rust, and Go). This enables the framework to scale across diverse tasks and contexts while respecting token limitations. Our experiments, using over 400 high-quality real-world GitHub issues selected from a pool of 2,300 issues, show that models like GPT-4o excel at aggressive patch generation, whereas DeepSeek and Gemini prioritize correctness in CI validation. SwingArena presents a scalable and extensible methodology for evaluating LLMs in realistic, CI-driven software development settings. More details are available on our project page: swing-bench.github.io
Abstract:Point detection has been developed to locate pedestrians in crowded scenes by training a counter through a point-to-point (P2P) supervision scheme. Despite its excellent localization and counting performance, training a point-based counter still faces challenges concerning annotation labor: hundreds to thousands of points are required to annotate a single sample capturing a dense crowd. In this paper, we integrate point-based methods into a semi-supervised counting framework based on pseudo-labeling, enabling the training of a counter with only a few annotated samples supplemented by a large volume of pseudo-labeled data. However, during implementation, the training encounters issues as the confidence for pseudo-labels fails to be propagated to background pixels via the P2P. To tackle this challenge, we devise a point-specific activation map (PSAM) to visually interpret the phenomena occurring during the ill-posed training. Observations from the PSAM suggest that the feature map is excessively activated by the loss for unlabeled data, causing the decoder to misinterpret these over-activations as pedestrians. To mitigate this issue, we propose a point-to-region (P2R) scheme to substitute P2P, which segments out local regions rather than detects a point corresponding to a pedestrian for supervision. Consequently, pixels in the local region can share the same confidence with the corresponding pseudo points. Experimental results in both semi-supervised counting and unsupervised domain adaptation highlight the advantages of our method, illustrating P2R can resolve issues identified in PSAM. The code is available at https://github.com/Elin24/P2RLoss.
Abstract:Human cognition typically involves thinking through abstract, fluid concepts rather than strictly using discrete linguistic tokens. Current reasoning models, however, are constrained to reasoning within the boundaries of human language, processing discrete token embeddings that represent fixed points in the semantic space. This discrete constraint restricts the expressive power and upper potential of such reasoning models, often causing incomplete exploration of reasoning paths, as standard Chain-of-Thought (CoT) methods rely on sampling one token per step. In this work, we introduce Soft Thinking, a training-free method that emulates human-like "soft" reasoning by generating soft, abstract concept tokens in a continuous concept space. These concept tokens are created by the probability-weighted mixture of token embeddings, which form the continuous concept space, enabling smooth transitions and richer representations that transcend traditional discrete boundaries. In essence, each generated concept token encapsulates multiple meanings from related discrete tokens, implicitly exploring various reasoning paths to converge effectively toward the correct answer. Empirical evaluations on diverse mathematical and coding benchmarks consistently demonstrate the effectiveness and efficiency of Soft Thinking, improving pass@1 accuracy by up to 2.48 points while simultaneously reducing token usage by up to 22.4% compared to standard CoT. Qualitative analysis further reveals that Soft Thinking outputs remain highly interpretable and readable, highlighting the potential of Soft Thinking to break the inherent bottleneck of discrete language-based reasoning. Code is available at https://github.com/eric-ai-lab/Soft-Thinking.
Abstract:Compared with the generic scenes, crowded scenes contain highly-overlapped instances, which result in: 1) more ambiguous anchors during training of object detectors, and 2) more predictions are likely to be mistakenly suppressed in post-processing during inference. To address these problems, we propose two new strategies, density-guided anchors (DGA) and density-guided NMS (DG-NMS), which uses object density maps to jointly compute optimal anchor assignments and reweighing, as well as an adaptive NMS. Concretely, based on an unbalanced optimal transport (UOT) problem, the density owned by each ground-truth object is transported to each anchor position at a minimal transport cost. And density on anchors comprises an instance-specific density distribution, from which DGA decodes the optimal anchor assignment and re-weighting strategy. Meanwhile, DG-NMS utilizes the predicted density map to adaptively adjust the NMS threshold to reduce mistaken suppressions. In the UOT, a novel overlap-aware transport cost is specifically designed for ambiguous anchors caused by overlapped neighboring objects. Extensive experiments on the challenging CrowdHuman dataset with Citypersons dataset demonstrate that our proposed density-guided detector is effective and robust to crowdedness. The code and pre-trained models will be made available later.
Abstract:Backdoor attacks typically place a specific trigger on certain training data, such that the model makes prediction errors on inputs with that trigger during inference. Despite the core role of the trigger, existing studies have commonly believed a perfect match between training-inference triggers is optimal. In this paper, for the first time, we systematically explore the training-inference trigger relation, particularly focusing on their mismatch, based on a Training-Inference Trigger Intensity Manipulation (TITIM) workflow. TITIM specifically investigates the training-inference trigger intensity, such as the size or the opacity of a trigger, and reveals new insights into trigger generalization and overfitting. These new insights challenge the above common belief by demonstrating that the training-inference trigger mismatch can facilitate attacks in two practical scenarios, posing more significant security threats than previously thought. First, when the inference trigger is fixed, using training triggers with mixed intensities leads to stronger attacks than using any single intensity. For example, on CIFAR-10 with ResNet-18, mixing training triggers with 1.0 and 0.1 opacities improves the worst-case attack success rate (ASR) (over different testing opacities) of the best single-opacity attack from 10.61\% to 92.77\%. Second, intentionally using certain mismatched training-inference triggers can improve the attack stealthiness, i.e., better bypassing defenses. For example, compared to the training/inference intensity of 1.0/1.0, using 1.0/0.7 decreases the area under the curve (AUC) of the Scale-Up defense from 0.96 to 0.62, while maintaining a high attack ASR (99.65\% vs. 91.62\%). The above new insights are validated to be generalizable across different backdoor attacks, models, datasets, tasks, and (digital/physical) domains.
Abstract:Significant progress has been achieved on the improvement and downstream usages of the Contrastive Language-Image Pre-training (CLIP) vision-language model, while less attention is paid to the interpretation of CLIP. We propose a Gradient-based visual and textual Explanation method for CLIP (Grad-ECLIP), which interprets the matching result of CLIP for specific input image-text pair. By decomposing the architecture of the encoder and discovering the relationship between the matching similarity and intermediate spatial features, Grad-ECLIP produces effective heat maps that show the influence of image regions or words on the CLIP results. Different from the previous Transformer interpretation methods that focus on the utilization of self-attention maps, which are typically extremely sparse in CLIP, we produce high-quality visual explanations by applying channel and spatial weights on token features. Qualitative and quantitative evaluations verify the effectiveness and superiority of Grad-ECLIP compared with the state-of-the-art methods. Furthermore, a series of analysis are conducted based on our visual and textual explanation results, from which we explore the working mechanism of image-text matching, the strengths and limitations in attribution identification of CLIP, and the relationship between the concreteness/abstractness of a word and its usage in CLIP. Finally, based on the ability of explanation map that indicates text-specific saliency region of input image, we also propose an application with Grad-ECLIP, which is adopted to boost the fine-grained alignment in the CLIP fine-tuning. The code of Grad-ECLIP is available here: https://github.com/Cyang-Zhao/Grad-Eclip.
Abstract:Efficiently handling long contexts is crucial for large language models (LLMs). While rotary position embeddings (RoPEs) enhance length generalization, effective length extrapolation remains challenging and often requires costly fine-tuning. In contrast, recent training-free approaches suffer from the attention sink phenomenon, leading to severe performance degradation. In this paper, we introduce ParallelComp, a novel training-free method for long-context extrapolation that extends LLMs' context length from 4K to 128K while maintaining high throughput and preserving perplexity, and integrates seamlessly with Flash Attention. Our analysis offers new insights into attention biases in parallel attention mechanisms and provides practical solutions to tackle these challenges. To mitigate the attention sink issue, we propose an attention calibration strategy that reduces biases, ensuring more stable long-range attention. Additionally, we introduce a chunk eviction strategy to efficiently manage ultra-long contexts on a single A100 80GB GPU. To further enhance efficiency, we propose a parallel KV cache eviction technique, which improves chunk throughput by 1.76x, thereby achieving a 23.50x acceleration in the prefilling stage with negligible performance loss due to attention calibration. Furthermore, ParallelComp achieves 91.17% of GPT-4's performance on long-context tasks using an 8B model trained on 8K-length context, outperforming powerful closed-source models such as Claude-2 and Kimi-Chat.
Abstract:Freight truck-related crashes pose significant challenges, leading to substantial economic losses, injuries, and fatalities, with pronounced spatial disparities across different regions. This study adopts a transport geography perspective to examine spatial justice concerns by employing deep counterfactual inference models to analyze how socioeconomic disparities, road infrastructure, and environmental conditions influence the geographical distribution and severity of freight truck crashes. By integrating road network datasets, socioeconomic attributes, and crash records from the Los Angeles metropolitan area, this research provides a nuanced spatial analysis of how different communities are disproportionately impacted. The results reveal significant spatial disparities in crash severity across areas with varying population densities, income levels, and minority populations, highlighting the pivotal role of infrastructural and environmental improvements in mitigating these disparities. The findings offer insights into targeted, location-specific policy interventions, suggesting enhancements in road infrastructure, lighting, and traffic control systems, particularly in low-income and minority-concentrated areas. This research contributes to the literature on transport geography and spatial equity by providing data-driven insights into effective measures for reducing spatial injustices associated with freight truck-related crashes.
Abstract:Sequential reasoning in agent systems has been significantly advanced by large language models (LLMs), yet existing approaches face limitations. Reflection-driven reasoning relies solely on knowledge in pretrained models, limiting performance in novel scenarios, while experience-assisted reasoning often depends on external experiences and lacks clear principles for selecting representative experiences. We address these limitations by proposing CoPS (Cross-Task Experience Sharing), a generalizable algorithm that enhances sequential reasoning by cross-task experience sharing and selection. In detail, CoPS leverages agents' experiences on previous tasks, selecting distribution-matched experiences via a provable pessimism-based strategy to maximize utility while minimizing risks from distribution shifts. Extensive experimental results on benchmarks like Alfworld, Webshop, and HotPotQA demonstrate that CoPS consistently outperforms state-of-the-art baselines, with superior sample efficiency suitable for resource-constrained scenarios. Theoretically, we show that the performance of our algorithm depends on both the quality of the pretrained LLM and the matching between the agent's task-dependent trial distribution and that generated by the LLM. Our work bridges the gap between existing sequential reasoning paradigms and validates the effectiveness of leveraging cross-task experiences, shedding light on the potential to improve agents' generalization and adaptability across diverse tasks. Our codes are available at $\href{https://github.com/uclaml/COPS}{\text{https://github.com/uclaml/COPS}}$.
Abstract:Existing large pre-trained models typically map text input to text output in an end-to-end manner, such as ChatGPT, or map a segment of text input to a hierarchy of action decisions, such as OpenVLA. However, humans can simultaneously generate text and actions when receiving specific input signals. For example, a driver can make precise driving decisions while conversing with a friend in the passenger seat. Motivated by this observation, we consider the following question in this work: is it possible to construct a pre-trained model that can provide both language interaction and precise decision-making capabilities in dynamic open scenarios. We provide a definitive answer to this question by developing a new model architecture termed Visual Language Action model for Chatting and Decision Making (VLA4CD), and further demonstrating its performance in challenging autonomous driving tasks. Specifically, we leverage LoRA to fine-tune a pre-trained LLM with data of multiple modalities covering language, visual, and action. Unlike the existing LoRA operations used for LLM fine-tuning, we have designed new computational modules and training cost functions for VLA4CD. These designs enable VLA4CD to provide continuous-valued action decisions while outputting text responses. In contrast, existing LLMs can only output text responses, and current VLA models can only output action decisions. Moreover, these VLA models handle action data by discretizing and then tokenizing the discretized actions, a method unsuitable for complex decision-making tasks involving high-dimensional continuous-valued action vectors, such as autonomous driving. The experimental results on CARLA validate that: (1) our proposed model construction method is effective; (2) compared to the SOTA VLA model, VLA4CD can provide more accurate real-time decision-making while retaining the text interaction capability inherent to LLMs.