Abstract:As sixth-generation (6G) networks advance, large language models (LLMs) are increasingly integrated into 6G infrastructure to enhance network management and intelligence. However, traditional LLMs architecture struggle to meet the stringent latency and security requirements of 6G, especially as the increasing in sequence length leads to greater task complexity. This paper proposes Edge-Prompt, a cloud-edge collaborative framework based on a hierarchical attention splicing mechanism. EdgePrompt employs distributed key-value (KV) pair optimization techniques to accelerate inference and adapt to network conditions. Additionally, to reduce the risk of data leakage, EdgePrompt incorporates a privacy preserving strategy by isolating sensitive information during processing. Experiments on public dataset show that EdgePrompt effectively improves the inference throughput and reduces the latency, which provides a reliable solution for LLMs deployment in 6G environments.
Abstract:Cooperative spectrum sensing (CSS) is essential for improving the spectrum efficiency and reliability of cognitive radio applications. Next-generation wireless communication networks increasingly employ uniform planar arrays (UPA) due to their ability to steer beamformers towards desired directions, mitigating interference and eavesdropping. However, the application of UPA-based CSS in cognitive radio remains largely unexplored. This paper proposes a multi-beam UPA-based weighted CSS (WCSS) framework to enhance detection reliability, applicable to various cognitive radio networks, including cellular, vehicular, and satellite communications. We first propose a weighting factor for commonly used energy detection (ED) and eigenvalue detection (EVD) techniques, based on the spatial variation of signal strengths resulting from UPA antenna beamforming. We then analytically characterize the performance of both weighted ED and weighted EVD by deriving closed-form expressions for false alarm and detection probabilities. Our numerical results, considering both static and dynamic user behaviors, demonstrate the superiority of WCSS in enhancing sensing performance compared to uniformly weighted detectors.
Abstract:The increasing complexity and scale of modern telecommunications networks demand intelligent automation to enhance efficiency, adaptability, and resilience. Agentic AI has emerged as a key paradigm for intelligent communications and networking, enabling AI-driven agents to perceive, reason, decide, and act within dynamic networking environments. However, effective decision-making in telecom applications, such as network planning, management, and resource allocation, requires integrating retrieval mechanisms that support multi-hop reasoning, historical cross-referencing, and compliance with evolving 3GPP standards. This article presents a forward-looking perspective on generative information retrieval-inspired intelligent communications and networking, emphasizing the role of knowledge acquisition, processing, and retrieval in agentic AI for telecom systems. We first provide a comprehensive review of generative information retrieval strategies, including traditional retrieval, hybrid retrieval, semantic retrieval, knowledge-based retrieval, and agentic contextual retrieval. We then analyze their advantages, limitations, and suitability for various networking scenarios. Next, we present a survey about their applications in communications and networking. Additionally, we introduce an agentic contextual retrieval framework to enhance telecom-specific planning by integrating multi-source retrieval, structured reasoning, and self-reflective validation. Experimental results demonstrate that our framework significantly improves answer accuracy, explanation consistency, and retrieval efficiency compared to traditional and semantic retrieval methods. Finally, we outline future research directions.
Abstract:Machine learning techniques have garnered great interest in designing communication systems owing to their capacity in tacking with channel uncertainty. To provide theoretical guarantees for learning-based communication systems, some recent works analyze generalization bounds for devised methods based on the assumption of Independently and Identically Distributed (I.I.D.) channels, a condition rarely met in practical scenarios. In this paper, we drop the I.I.D. channel assumption and study an online optimization problem of learning to communicate over time-correlated channels. To address this issue, we further focus on two specific tasks: optimizing channel decoders for time-correlated fading channels and selecting optimal codebooks for time-correlated additive noise channels. For utilizing temporal dependence of considered channels to better learn communication systems, we develop two online optimization algorithms based on the optimistic online mirror descent framework. Furthermore, we provide theoretical guarantees for proposed algorithms via deriving sub-linear regret bound on the expected error probability of learned systems. Extensive simulation experiments have been conducted to validate that our presented approaches can leverage the channel correlation to achieve a lower average symbol error rate compared to baseline methods, consistent with our theoretical findings.
Abstract:With the impressive achievements of chatGPT and Sora, generative artificial intelligence (GAI) has received increasing attention. Not limited to the field of content generation, GAI is also widely used to solve the problems in wireless communication scenarios due to its powerful learning and generalization capabilities. Therefore, we discuss key applications of GAI in improving unmanned aerial vehicle (UAV) communication and networking performance in this article. Specifically, we first review the key technologies of GAI and the important roles of UAV networking. Then, we show how GAI can improve the communication, networking, and security performances of UAV systems. Subsequently, we propose a novel framework of GAI for advanced UAV networking, and then present a case study of UAV-enabled spectrum map estimation and transmission rate optimization based on the proposed framework to verify the effectiveness of GAI-enabled UAV systems. Finally, we discuss some important open directions.
Abstract:This paper presents an optimization approach for cooperative Medium Access Control (MAC) techniques in Vehicular Ad Hoc Networks (VANETs) equipped with Roadside Unit (RSU) to enhance network throughput. Our method employs a distributed cooperative MAC scheme based on Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol, featuring selective RSU probing and adaptive transmission. It utilizes a dual timescale channel access framework, with a ``large-scale'' phase accounting for gradual changes in vehicle locations and a ``small-scale'' phase adapting to rapid channel fluctuations. We propose the RSU Probing and Cooperative Access (RPCA) strategy, a two-stage approach based on dynamic inter-vehicle distances from the RSU. Using optimal sequential planned decision theory, we rigorously prove its optimality in maximizing average system throughput per large-scale phase. For practical implementation in VANETs, we develop a distributed MAC algorithm with periodic location updates. It adjusts thresholds based on inter-vehicle and vehicle-RSU distances during the large-scale phase and accesses channels following the RPCA strategy with updated thresholds during the small-scale phase. Simulation results confirm the effectiveness and efficiency of our algorithm.
Abstract:Driven by the development goal of network paradigm and demand for various functions in the sixth-generation (6G) mission-critical Internet-of-Things (MC-IoT), we foresee a goal-oriented integration of sensing, communication, computing, and control (GIS3C) in this paper. We first provide an overview of the tasks, requirements, and challenges of MC-IoT. Then we introduce an end-to-end GIS3C architecture, in which goal-oriented communication is leveraged to bridge and empower sensing, communication, control, and computing functionalities. By revealing the interplay among multiple subsystems in terms of key performance indicators and parameters, this paper introduces unified metrics, i.e., task completion effectiveness and cost, to facilitate S3C co-design in MC-IoT. The preliminary results demonstrate the benefits of GIS3C in improving task completion effectiveness while reducing costs. We also identify and highlight the gaps and challenges in applying GIS3C in the future 6G networks.
Abstract:We consider a wireless networked control system (WNCS) with bidirectional imperfect links for real-time applications such as smart grids. To maintain the stability of WNCS, captured by the probability that plant state violates preset values, at minimal cost, heterogeneous physical processes are monitored by multiple sensors. This status information, such as dynamic plant state and Markov Process-based context information, is then received/estimated by the controller for remote control. However, scheduling multiple sensors and designing the controller with limited resources is challenging due to their coupling, delay, and transmission loss. We formulate a Constrained Markov Decision Problem (CMDP) to minimize violation probability with cost constraints. We reveal the relationship between the goal and different updating actions by analyzing the significance of information that incorporates goal-related usefulness and contextual importance. Subsequently, a goal-oriented deterministic scheduling policy is proposed. Two sensing-assisted control strategies and a control-aware estimation policy are proposed to improve the violation probability-cost tradeoff, integrated with the scheduling policy to form a goal-oriented co-design framework. Additionally, we explore retransmission in downlink transmission and qualitatively analyze its preference scenario. Simulation results demonstrate that the proposed goal-oriented co-design policy outperforms previous work in simultaneously reducing violation probability and cost
Abstract:In opportunistic cognitive radio networks, when the primary signal is very weak compared to the background noise, the secondary user requires long sensing time to achieve a reliable spectrum sensing performance, leading to little remaining time for the secondary transmission. To tackle this issue, we propose an active reconfigurable intelligent surface (RIS) assisted spectrum sensing system, where the received signal strength from the interested primary user can be enhanced and underlying interference within the background noise can be mitigated as well. In comparison with the passive RIS, the active RIS can not only adapt the phase shift of each reflecting element but also amplify the incident signals. Notably, we study the reflecting coefficient matrix (RCM) optimization problem to improve the detection probability given a maximum tolerable false alarm probability and limited sensing time. Then, we show that the formulated problem can be equivalently transformed to a weighted mean square error minimization problem using the principle of the well-known weighted minimum mean square error (WMMSE) algorithm, and an iterative optimization approach is proposed to obtain the optimal RCM. In addition, to fairly compare passive RIS and active RIS, we study the required power budget of the RIS to achieve a target detection probability under a special case where the direct links are neglected and the RIS-related channels are line-of-sight. Via extensive simulations, the effectiveness of the WMMSE-based RCM optimization approach is demonstrated. Furthermore, the results reveal that the active RIS can outperform the passive RIS when the underlying interference within the background noise is relatively weak, whereas the passive RIS performs better in strong interference scenarios because the same power budget can support a vast number of passive reflecting elements for interference mitigation.
Abstract:Symbiotic radio (SR) is a promising technique to support cellular Internet-of-Things (IoT) by forming a mutualistic relationship between IoT and cellular transmissions. In this paper, we propose a novel multi-user multi-IoT-device SR system to enable massive access in cellular IoT. In the considered system, the base station (BS) transmits information to multiple cellular users, and a number of IoT devices simultaneously backscatter their information to these users via the cellular signal. The cellular users jointly decode the information from the BS and IoT devices. Noting that the reflective links from the IoT devices can be regarded as the channel uncertainty of the direct links, we apply the robust design method to design the beamforming vectors at the BS. Specifically, the transmit power is minimized under the cellular transmission outage probability constraints and IoT transmission sum rate constraints. The algorithm based on semi-definite programming and difference-of-convex programming is proposed to solve the power minimization problem. Moreover, we consider a special case where each cellular user is associated with several adjacent IoT devices and propose a direction of arrival (DoA)-based transmit beamforming design approach. The DoA-based approach requires only the DoA and angular spread (AS) of the direct links instead of the instantaneous channel state information (CSI) of the reflective link channels, leading to a significant reduction in the channel feedback overhead. Simulation results have substantiated the multi-user multi-IoT-device SR system and the effectiveness of the proposed beamforming approaches. It is shown that the DoA-based beamforming approach achieves comparable performance as the CSI-based approach in the special case when the ASs are small.