Abstract:Covert communications provide a stronger privacy protection than cryptography and physical-layer security (PLS). However, previous works on covert communications have implicitly assumed the validity of channel reciprocity, i.e., wireless channels remain constant or approximately constant during their coherence time. In this work, we investigate covert communications in the presence of a disco RIS (DRIS) deployed by the warden Willie, where the DRIS with random and time-varying reflective coefficients acts as a "disco ball", introducing timevarying fully-passive jamming (FPJ). Consequently, the channel reciprocity assumption no longer holds. The DRIS not only jams the covert transmissions between Alice and Bob, but also decreases the error probabilities of Willie's detections, without either Bob's channel knowledge or additional jamming power. To quantify the impact of the DRIS on covert communications, we first design a detection rule for the warden Willie in the presence of time-varying FPJ introduced by the DRIS. Then, we define the detection error probabilities, i.e., the false alarm rate (FAR) and the missed detection rate (MDR), as the monitoring performance metrics for Willie's detections, and the signal-to-jamming-plusnoise ratio (SJNR) as a communication performance metric for the covert transmissions between Alice and Bob. Based on the detection rule, we derive the detection threshold for the warden Willie to detect whether communications between Alice and Bob is ongoing, considering the time-varying DRIS-based FPJ. Moreover, we conduct theoretical analyses of the FAR and the MDR at the warden Willie, as well as SJNR at Bob, and then present unique properties of the DRIS-based FPJ in covert communications. We present numerical results to validate the derived theoretical analyses and evaluate the impact of DRIS on covert communications.
Abstract:Nowadays, Generative AI (GenAI) reshapes numerous domains by enabling machines to create content across modalities. As GenAI evolves into autonomous agents capable of reasoning, collaboration, and interaction, they are increasingly deployed on network infrastructures to serve humans automatically. This emerging paradigm, known as the agentic network, presents new optimization challenges due to the demand to incorporate subjective intents of human users expressed in natural language. Traditional generic Deep Reinforcement Learning (DRL) struggles to capture intent semantics and adjust policies dynamically, thus leading to suboptimality. In this paper, we present LAMeTA, a Large AI Model (LAM)-empowered Two-stage Approach for intent-aware agentic network optimization. First, we propose Intent-oriented Knowledge Distillation (IoKD), which efficiently distills intent-understanding capabilities from resource-intensive LAMs to lightweight edge LAMs (E-LAMs) to serve end users. Second, we develop Symbiotic Reinforcement Learning (SRL), integrating E-LAMs with a policy-based DRL framework. In SRL, E-LAMs translate natural language user intents into structured preference vectors that guide both state representation and reward design. The DRL, in turn, optimizes the generative service function chain composition and E-LAM selection based on real-time network conditions, thus optimizing the subjective Quality-of-Experience (QoE). Extensive experiments conducted in an agentic network with 81 agents demonstrate that IoKD reduces mean squared error in intent prediction by up to 22.5%, while SRL outperforms conventional generic DRL by up to 23.5% in maximizing intent-aware QoE.
Abstract:Over-the-air computation (AirComp) has emerged as a promising technology that enables simultaneous transmission and computation through wireless channels. In this paper, we investigate the networked AirComp in multiple clusters allowing diversified data computation, which is yet challenged by the transceiver coordination and interference management therein. Particularly, we aim to maximize the multi-cluster weighted-sum AirComp rate, where the transmission scalar as well as receive beamforming are jointly investigated while addressing the interference issue. From an optimization perspective, we decompose the formulated problem and adopt the alternating optimization technique with an iterative process to approximate the solution. Then, we reinterpret the iterations through the principle of algorithm unfolding, where the channel condition and mutual interference in the AirComp network constitute an underlying graph. Accordingly, the proposed unfolding architecture learns the weights parameterized by graph neural networks, which is trained through stochastic gradient descent approach. Simulation results show that our proposals outperform the conventional schemes, and the proposed unfolded graph learning substantially alleviates the interference and achieves superior computation performance, with strong and efficient adaptation to the dynamic and scalable networks.
Abstract:A key challenge in integrated sensing and communications (ISAC) is the synthesis of waveforms that can modulate communication messages and achieve good sensing performance simultaneously. In ISAC systems, standard communication waveforms can be adapted for sensing, as the sensing receiver (co-located with the transmitter) has knowledge of the communication message and consequently the waveform. However, the randomness of communications may result in waveforms that have high sidelobes masking weak targets. Thus, it is desirable to refine communication waveforms to improve the sensing performance by reducing the integrated sidelobe levels (ISL). This is similar to the peak-to-average power ratio (PAPR) mitigation in orthogonal frequency division multiplexing (OFDM), in which the OFDM-modulated waveform needs to be refined to reduce the PAPR. In this paper, inspired by PAPR reduction algorithms in OFDM, we employ trellis shaping in OFDM-based ISAC systems to refine waveforms for specific sensing metrics using convolutional codes and Viterbi decoding. In such a scheme, the communication data is encoded and then mapped to the signaling constellation in different subcarriers, such that the time-domain sidelobes are reduced. An interesting observation is that sidelobe reduction in OFDM-based ISAC is dual to PAPR reduction in OFDM, thereby sharing a similar signaling structure. Numerical simulations and hardware software defined radio USRP experiments are carried out to demonstrate the effectiveness of the proposed trellis shaping approach.
Abstract:Advanced AI-Generated Content (AIGC) technologies have injected new impetus into teleoperation, further enhancing its security and efficiency. Edge AIGC networks have been introduced to meet the stringent low-latency requirements of teleoperation. However, the inherent uncertainty of AIGC service quality and the need to incentivize AIGC service providers (ASPs) make the design of a robust incentive mechanism essential. This design is particularly challenging due to both uncertainty and information asymmetry, as teleoperators have limited knowledge of the remaining resource capacities of ASPs. To this end, we propose a distributionally robust optimization (DRO)-based contract theory to design robust reward schemes for AIGC task offloading. Notably, our work extends the contract theory by integrating DRO, addressing the fundamental challenge of contract design under uncertainty. In this paper, contract theory is employed to model the information asymmetry, while DRO is utilized to capture the uncertainty in AIGC service quality. Given the inherent complexity of the original DRO-based contract theory problem, we reformulate it into an equivalent, tractable bi-level optimization problem. To efficiently solve this problem, we develop a Block Coordinate Descent (BCD)-based algorithm to derive robust reward schemes. Simulation results on our unity-based teleoperation platform demonstrate that the proposed method improves teleoperator utility by 2.7\% to 10.74\% under varying degrees of AIGC service quality shifts and increases ASP utility by 60.02\% compared to the SOTA method, i.e., Deep Reinforcement Learning (DRL)-based contract theory. The code and data are publicly available at https://github.com/Zijun0819/DRO-Contract-Theory.
Abstract:Orthogonal time frequency space (OTFS) modulation is widely acknowledged as a prospective waveform for future wireless communication networks.To provide insights for the practical system design, this paper analyzes the outage probability of OTFS modulation with finite blocklength.To begin with, we present the system model and formulate the analysis of outage probability for OTFS with finite blocklength as an equivalent problem of calculating the outage probability with finite blocklength over parallel additive white Gaussian noise (AWGN) channels.Subsequently, we apply the equivalent noise approach to derive a lower bound on the outage probability of OTFS with finite blocklength under both average power allocation and water-filling power allocation strategies, respectively.Finally, the lower bounds of the outage probability are determined using the Monte-Carlo method for the two power allocation strategies.The impact of the number of resolvable paths and coding rates on the outage probability is analyzed, and the simulation results are compared with the theoretical lower bounds.
Abstract:In this paper, we consider transmit beamforming and reflection patterns design in reconfigurable intelligent surface (RIS)-assisted integrated sensing and communication (ISAC) systems, where the dual-function base station (DFBS) lacks channel state information (CSI). To address the high overhead of cascaded channel estimation, we propose an improved artificial fish swarm algorithm (AFSA) combined with a feedback-based joint active and passive beam training scheme. In this approach, we consider the interference caused by multipath user echo signals on target detection and propose a beamforming design method that balances both communication and sensing performance. Numerical simulations show that the proposed AFSA outperforms other optimization algorithms, particularly in its robustness against echo interference under different communication signal-to-noise ratio (SNR) constraints.
Abstract:In this paper, we propose the FedFeat+ framework, which distinctively separates feature extraction from classification. We develop a two-tiered model training process: following local training, clients transmit their weights and some features extracted from the feature extractor from the final local epochs to the server. The server aggregates these models using the FedAvg method and subsequently retrains the global classifier utilizing the shared features. The classifier retraining process enhances the model's understanding of the holistic view of the data distribution, ensuring better generalization across diverse datasets. This improved generalization enables the classifier to adaptively influence the feature extractor during subsequent local training epochs. We establish a balance between enhancing model accuracy and safeguarding individual privacy through the implementation of differential privacy mechanisms. By incorporating noise into the feature vectors shared with the server, we ensure that sensitive data remains confidential. We present a comprehensive convergence analysis, along with theoretical reasoning regarding performance enhancement and privacy preservation. We validate our approach through empirical evaluations conducted on benchmark datasets, including CIFAR-10, CIFAR-100, MNIST, and FMNIST, achieving high accuracy while adhering to stringent privacy guarantees. The experimental results demonstrate that the FedFeat+ framework, despite using only a lightweight two-layer CNN classifier, outperforms the FedAvg method in both IID and non-IID scenarios, achieving accuracy improvements ranging from 3.92 % to 12.34 % across CIFAR-10, CIFAR-100, and Fashion-MNIST datasets.
Abstract:While unmanned aerial vehicles (UAVs) with flexible mobility are envisioned to enhance physical layer security in wireless communications, the efficient security design that adapts to such high network dynamics is rather challenging. The conventional approaches extended from optimization perspectives are usually quite involved, especially when jointly considering factors in different scales such as deployment and transmission in UAV-related scenarios. In this paper, we address the UAV-enabled multi-user secure communications by proposing a deep graph reinforcement learning framework. Specifically, we reinterpret the security beamforming as a graph neural network (GNN) learning task, where mutual interference among users is managed through the message-passing mechanism. Then, the UAV deployment is obtained through soft actor-critic reinforcement learning, where the GNN-based security beamforming is exploited to guide the deployment strategy update. Simulation results demonstrate that the proposed approach achieves near-optimal security performance and significantly enhances the efficiency of strategy determination. Moreover, the deep graph reinforcement learning framework offers a scalable solution, adaptable to various network scenarios and configurations, establishing a robust basis for information security in UAV-enabled communications.
Abstract:Artificial intelligence (AI) promises to revolutionize the design, optimization and management of next-generation communication systems. In this article, we explore the integration of large AI models (LAMs) into semantic communications (SemCom) by leveraging their multi-modal data processing and generation capabilities. Although LAMs bring unprecedented abilities to extract semantics from raw data, this integration entails multifaceted challenges including high resource demands, model complexity, and the need for adaptability across diverse modalities and tasks. To overcome these challenges, we propose a LAM-based multi-task SemCom (MTSC) architecture, which includes an adaptive model compression strategy and a federated split fine-tuning approach to facilitate the efficient deployment of LAM-based semantic models in resource-limited networks. Furthermore, a retrieval-augmented generation scheme is implemented to synthesize the most recent local and global knowledge bases to enhance the accuracy of semantic extraction and content generation, thereby improving the inference performance. Finally, simulation results demonstrate the efficacy of the proposed LAM-based MTSC architecture, highlighting the performance enhancements across various downstream tasks under varying channel conditions.