Instruction tuning has significantly advanced large language models (LLMs) such as ChatGPT, enabling them to align with human instructions across diverse tasks. However, progress in open vision-language models (VLMs) has been limited due to the scarcity of high-quality instruction datasets. To tackle this challenge and promote research in the vision-language field, we introduce the Multi-Modal, Multilingual Instruction Tuning (M$^3$IT) dataset, designed to optimize VLM alignment with human instructions. Our M$^3$IT dataset comprises 40 carefully curated datasets, including 2.4 million instances and 400 manually written task instructions, reformatted into a vision-to-text structure. Key tasks are translated into 80 languages with an advanced translation system, ensuring broader accessibility. M$^3$IT surpasses previous datasets regarding task coverage, instruction number and instance scale. Moreover, we develop Ying-VLM, a VLM model trained on our M$^3$IT dataset, showcasing its potential to answer complex questions requiring world knowledge, generalize to unseen video tasks, and comprehend unseen instructions in Chinese. We have open-sourced the dataset to encourage further research.
This work proposes POMP, a prompt pre-training method for vision-language models. Being memory and computation efficient, POMP enables the learned prompt to condense semantic information for a rich set of visual concepts with over twenty-thousand classes. Once pre-trained, the prompt with a strong transferable ability can be directly plugged into a variety of visual recognition tasks including image classification, semantic segmentation, and object detection, to boost recognition performances in a zero-shot manner. Empirical evaluation shows that POMP achieves state-of-the-art performances on 21 downstream datasets, e.g., 67.0% average accuracy on 10 classification dataset (+3.1% compared to CoOp) and 84.4 hIoU on open-vocabulary Pascal VOC segmentation (+6.9 compared to ZSSeg).
Contrastive Language-Image Pre-training (CLIP) has demonstrated great potential in realizing open-vocabulary image classification in a matching style, because of its holistic use of natural language supervision that covers unconstrained real-world visual concepts. However, it is, in turn, also difficult to evaluate and analyze the openness of CLIP-like models, since they are in theory open to any vocabulary but the actual accuracy varies. To address the insufficiency of conventional studies on openness, we resort to an incremental view and define the extensibility, which essentially approximates the model's ability to deal with new visual concepts, by evaluating openness through vocabulary expansions. Our evaluation based on extensibility shows that CLIP-like models are hardly truly open and their performances degrade as the vocabulary expands to different degrees. Further analysis reveals that the over-estimation of openness is not because CLIP-like models fail to capture the general similarity of image and text features of novel visual concepts, but because of the confusion among competing text features, that is, they are not stable with respect to the vocabulary. In light of this, we propose to improve the openness of CLIP from the perspective of feature space by enforcing the distinguishability of text features. Our method retrieves relevant texts from the pre-training corpus to enhance prompts for inference, which boosts the extensibility and stability of CLIP even without fine-tuning.
Realizing general-purpose language intelligence has been a longstanding goal for natural language processing, where standard evaluation benchmarks play a fundamental and guiding role. We argue that for general-purpose language intelligence evaluation, the benchmark itself needs to be comprehensive and systematic. To this end, we propose CUGE, a Chinese Language Understanding and Generation Evaluation benchmark with the following features: (1) Hierarchical benchmark framework, where datasets are principally selected and organized with a language capability-task-dataset hierarchy. (2) Multi-level scoring strategy, where different levels of model performance are provided based on the hierarchical framework. To facilitate CUGE, we provide a public leaderboard that can be customized to support flexible model judging criteria. Evaluation results on representative pre-trained language models indicate ample room for improvement towards general-purpose language intelligence. CUGE is publicly available at cuge.baai.ac.cn.
Knowledge distillation~(KD) has been proved effective for compressing large-scale pre-trained language models. However, existing methods conduct KD statically, e.g., the student model aligns its output distribution to that of a selected teacher model on the pre-defined training dataset. In this paper, we explore whether a dynamic knowledge distillation that empowers the student to adjust the learning procedure according to its competency, regarding the student performance and learning efficiency. We explore the dynamical adjustments on three aspects: teacher model adoption, data selection, and KD objective adaptation. Experimental results show that (1) proper selection of teacher model can boost the performance of student model; (2) conducting KD with 10% informative instances achieves comparable performance while greatly accelerates the training; (3) the student performance can be boosted by adjusting the supervision contribution of different alignment objective. We find dynamic knowledge distillation is promising and provide discussions on potential future directions towards more efficient KD methods. Our code is available at https://github.com/lancopku/DynamicKD.
Data augmentation aims to enrich training samples for alleviating the overfitting issue in low-resource or class-imbalanced situations. Traditional methods first devise task-specific operations such as Synonym Substitute, then preset the corresponding parameters such as the substitution rate artificially, which require a lot of prior knowledge and are prone to fall into the sub-optimum. Besides, the number of editing operations is limited in the previous methods, which decreases the diversity of the augmented data and thus restricts the performance gain. To overcome the above limitations, we propose a framework named Text AutoAugment (TAA) to establish a compositional and learnable paradigm for data augmentation. We regard a combination of various operations as an augmentation policy and utilize an efficient Bayesian Optimization algorithm to automatically search for the best policy, which substantially improves the generalization capability of models. Experiments on six benchmark datasets show that TAA boosts classification accuracy in low-resource and class-imbalanced regimes by an average of 8.8% and 9.7%, respectively, outperforming strong baselines.
Despite the achievements of large-scale multimodal pre-training approaches, cross-modal retrieval, e.g., image-text retrieval, remains a challenging task. To bridge the semantic gap between the two modalities, previous studies mainly focus on word-region alignment at the object level, lacking the matching between the linguistic relation among the words and the visual relation among the regions. The neglect of such relation consistency impairs the contextualized representation of image-text pairs and hinders the model performance and the interpretability. In this paper, we first propose a novel metric, Intra-modal Self-attention Distance (ISD), to quantify the relation consistency by measuring the semantic distance between linguistic and visual relations. In response, we present Inter-modal Alignment on Intra-modal Self-attentions (IAIS), a regularized training method to optimize the ISD and calibrate intra-modal self-attentions from the two modalities mutually via inter-modal alignment. The IAIS regularizer boosts the performance of prevailing models on Flickr30k and MS COCO datasets by a considerable margin, which demonstrates the superiority of our approach.
Dynamic early exiting aims to accelerate pre-trained language models' (PLMs) inference by exiting in shallow layer without passing through the entire model. In this paper, we analyze the working mechanism of dynamic early exiting and find it cannot achieve a satisfying trade-off between inference speed and performance. On one hand, the PLMs' representations in shallow layers are not sufficient for accurate prediction. One the other hand, the internal off-ramps cannot provide reliable exiting decisions. To remedy this, we instead propose CascadeBERT, which dynamically selects a proper-sized, complete model in a cascading manner. To obtain more reliable model selection, we further devise a difficulty-aware objective, encouraging the model output class probability to reflect the real difficulty of each instance. Extensive experimental results demonstrate the superiority of our proposal over strong baseline models of PLMs' acceleration including both dynamic early exiting and knowledge distillation methods.
We focus on the task of Automatic Live Video Commenting (ALVC), which aims to generate real-time video comments based on both video frames and other viewers' remarks. An intractable challenge in this task is the appropriate modeling of complex dependencies between video and textual inputs. Previous work in the ALVC task applies separate attention on these two input sources to obtain their representations. In this paper, we argue that the information of video and text should be modeled integrally. We propose a novel model equipped with a Diversified Co-Attention layer (DCA) and a Gated Attention Module (GAM). DCA allows interactions between video and text from diversified perspectives via metric learning, while GAM collects an informative context for comment generation. We further introduce a parameter orthogonalization technique to allieviate information redundancy in DCA. Experiment results show that our model outperforms previous approaches in the ALVC task and the traditional co-attention model, achieving state-of-the-art results.