Abstract:The rapid growth of online video platforms, particularly live streaming services, has created an urgent need for real-time video understanding systems. These systems must process continuous video streams and respond to user queries instantaneously, presenting unique challenges for current Video Large Language Models (VideoLLMs). While existing VideoLLMs excel at processing complete videos, they face significant limitations in streaming scenarios due to their inability to handle dense, redundant frames efficiently. We introduce TimeChat-Online, a novel online VideoLLM that revolutionizes real-time video interaction. At its core lies our innovative Differential Token Drop (DTD) module, which addresses the fundamental challenge of visual redundancy in streaming videos. Drawing inspiration from human visual perception's Change Blindness phenomenon, DTD preserves meaningful temporal changes while filtering out static, redundant content between frames. Remarkably, our experiments demonstrate that DTD achieves an 82.8% reduction in video tokens while maintaining 98% performance on StreamingBench, revealing that over 80% of visual content in streaming videos is naturally redundant without requiring language guidance. To enable seamless real-time interaction, we present TimeChat-Online-139K, a comprehensive streaming video dataset featuring diverse interaction patterns including backward-tracing, current-perception, and future-responding scenarios. TimeChat-Online's unique Proactive Response capability, naturally achieved through continuous monitoring of video scene transitions via DTD, sets it apart from conventional approaches. Our extensive evaluation demonstrates TimeChat-Online's superior performance on streaming benchmarks (StreamingBench and OvOBench) and maintaining competitive results on long-form video tasks such as Video-MME and MLVU.
Abstract:Large multimodal models (LMMs) have shown remarkable performance in the visual commonsense reasoning (VCR) task, which aims to answer a multiple-choice question based on visual commonsense within an image. However, the ability of LMMs to correct potential visual commonsense errors in the distractor upon their occurrence is yet under-explored. Drawing inspiration from how a human teacher crafts challenging distractors to test students' comprehension of the concepts or skills and assists them in identifying and correcting errors toward the answer, we are the pioneering research for LMMs to simulate this error correction process. To this end, we employ GPT-4 as a ``teacher'' to collect the explainable feedback dataset VCR-DF for error correction, which serves as a benchmark to evaluate the ability of LMMs to identify misconceptions and clarify reasons behind the error in VCR distractors toward final answers. In addition, we propose an LMM-based Pedagogical Expert Instructed Feedback Generation (PEIFG) model to incorporate the learnable expert prompts and multimodal instruction as guidance for feedback generation. Experimental results show that our PEIFG significantly outperforms existing LMMs. We believe that our benchmark provides a new direction for evaluating the capabilities of LMMs.
Abstract:Vision-language generative reward models (VL-GenRMs) play a crucial role in aligning and evaluating multimodal AI systems, yet their own evaluation remains under-explored. Current assessment methods primarily rely on AI-annotated preference labels from traditional VL tasks, which can introduce biases and often fail to effectively challenge state-of-the-art models. To address these limitations, we introduce VL-RewardBench, a comprehensive benchmark spanning general multimodal queries, visual hallucination detection, and complex reasoning tasks. Through our AI-assisted annotation pipeline combining sample selection with human verification, we curate 1,250 high-quality examples specifically designed to probe model limitations. Comprehensive evaluation across 16 leading large vision-language models, demonstrates VL-RewardBench's effectiveness as a challenging testbed, where even GPT-4o achieves only 65.4% accuracy, and state-of-the-art open-source models such as Qwen2-VL-72B, struggle to surpass random-guessing. Importantly, performance on VL-RewardBench strongly correlates (Pearson's r > 0.9) with MMMU-Pro accuracy using Best-of-N sampling with VL-GenRMs. Analysis experiments uncover three critical insights for improving VL-GenRMs: (i) models predominantly fail at basic visual perception tasks rather than reasoning tasks; (ii) inference-time scaling benefits vary dramatically by model capacity; and (iii) training VL-GenRMs to learn to judge substantially boosts judgment capability (+14.7% accuracy for a 7B VL-GenRM). We believe VL-RewardBench along with the experimental insights will become a valuable resource for advancing VL-GenRMs.