Alert button
Picture for Furu Wei

Furu Wei

Alert button

Kosmos-2.5: A Multimodal Literate Model

Sep 20, 2023
Tengchao Lv, Yupan Huang, Jingye Chen, Lei Cui, Shuming Ma, Yaoyao Chang, Shaohan Huang, Wenhui Wang, Li Dong, Weiyao Luo, Shaoxiang Wu, Guoxin Wang, Cha Zhang, Furu Wei

We present Kosmos-2.5, a multimodal literate model for machine reading of text-intensive images. Pre-trained on large-scale text-intensive images, Kosmos-2.5 excels in two distinct yet cooperative transcription tasks: (1) generating spatially-aware text blocks, where each block of text is assigned its spatial coordinates within the image, and (2) producing structured text output that captures styles and structures into the markdown format. This unified multimodal literate capability is achieved through a shared Transformer architecture, task-specific prompts, and flexible text representations. We evaluate Kosmos-2.5 on end-to-end document-level text recognition and image-to-markdown text generation. Furthermore, the model can be readily adapted for any text-intensive image understanding task with different prompts through supervised fine-tuning, making it a general-purpose tool for real-world applications involving text-rich images. This work also paves the way for the future scaling of multimodal large language models.

Viaarxiv icon

PoSE: Efficient Context Window Extension of LLMs via Positional Skip-wise Training

Sep 19, 2023
Dawei Zhu, Nan Yang, Liang Wang, Yifan Song, Wenhao Wu, Furu Wei, Sujian Li

In this paper, we introduce Positional Skip-wisE (PoSE) training for efficient adaptation of large language models~(LLMs) to extremely long context windows. PoSE decouples train length from target context window size by simulating long inputs using a fixed context window with manipulated position indices during training. Concretely, we select several short chunks from a long input sequence, and introduce distinct skipping bias terms to modify the position indices of each chunk. These bias terms, along with the length of each chunk, are altered for each training example, allowing the model to adapt to all positions within the target context window without training on full length inputs. Experiments show that, compared with fine-tuning on the full length, PoSE greatly reduces memory and time overhead with minimal impact on performance. Leveraging this advantage, we have successfully extended the LLaMA model to 128k tokens. Furthermore, we empirically confirm that PoSE is compatible with all RoPE-based LLMs and various position interpolation strategies. Notably, by decoupling fine-tuning length from target context window, PoSE can theoretically extend the context window infinitely, constrained only by memory usage for inference. With ongoing advancements for efficient inference, we believe PoSE holds great promise for scaling the context window even further.

Viaarxiv icon

Adapting Large Language Models via Reading Comprehension

Sep 18, 2023
Daixuan Cheng, Shaohan Huang, Furu Wei

We explore how continued pre-training on domain-specific corpora influences large language models, revealing that training on the raw corpora endows the model with domain knowledge, but drastically hurts its prompting ability for question answering. Taken inspiration from human learning via reading comprehension--practice after reading improves the ability to answer questions based on the learned knowledge--we propose a simple method for transforming raw corpora into reading comprehension texts. Each raw text is enriched with a series of tasks related to its content. Our method, highly scalable and applicable to any pre-training corpora, consistently enhances performance across various tasks in three different domains: biomedicine, finance, and law. Notably, our 7B language model achieves competitive performance with domain-specific models of much larger scales, such as BloombergGPT-50B. Furthermore, we demonstrate that domain-specific reading comprehension texts can improve the model's performance even on general benchmarks, showing the potential to develop a general model across even more domains. Our model, code, and data will be available at

Viaarxiv icon

Large Language Model for Science: A Study on P vs. NP

Sep 11, 2023
Qingxiu Dong, Li Dong, Ke Xu, Guangyan Zhou, Yaru Hao, Zhifang Sui, Furu Wei

In this work, we use large language models (LLMs) to augment and accelerate research on the P versus NP problem, one of the most important open problems in theoretical computer science and mathematics. Specifically, we propose Socratic reasoning, a general framework that promotes in-depth thinking with LLMs for complex problem-solving. Socratic reasoning encourages LLMs to recursively discover, solve, and integrate problems while facilitating self-evaluation and refinement. Our pilot study on the P vs. NP problem shows that GPT-4 successfully produces a proof schema and engages in rigorous reasoning throughout 97 dialogue turns, concluding "P $\neq$ NP", which is in alignment with (Xu and Zhou, 2023). The investigation uncovers novel insights within the extensive solution space of LLMs, shedding light on LLM for Science.

* 73 pages 
Viaarxiv icon

WavMark: Watermarking for Audio Generation

Aug 24, 2023
Guangyu Chen, Yu Wu, Shujie Liu, Tao Liu, Xiaoyong Du, Furu Wei

Figure 1 for WavMark: Watermarking for Audio Generation
Figure 2 for WavMark: Watermarking for Audio Generation
Figure 3 for WavMark: Watermarking for Audio Generation
Figure 4 for WavMark: Watermarking for Audio Generation

Recent breakthroughs in zero-shot voice synthesis have enabled imitating a speaker's voice using just a few seconds of recording while maintaining a high level of realism. Alongside its potential benefits, this powerful technology introduces notable risks, including voice fraud and speaker impersonation. Unlike the conventional approach of solely relying on passive methods for detecting synthetic data, watermarking presents a proactive and robust defence mechanism against these looming risks. This paper introduces an innovative audio watermarking framework that encodes up to 32 bits of watermark within a mere 1-second audio snippet. The watermark is imperceptible to human senses and exhibits strong resilience against various attacks. It can serve as an effective identifier for synthesized voices and holds potential for broader applications in audio copyright protection. Moreover, this framework boasts high flexibility, allowing for the combination of multiple watermark segments to achieve heightened robustness and expanded capacity. Utilizing 10 to 20-second audio as the host, our approach demonstrates an average Bit Error Rate (BER) of 0.48\% across ten common attacks, a remarkable reduction of over 2800\% in BER compared to the state-of-the-art watermarking tool. See for demos of our work.

Viaarxiv icon

Retentive Network: A Successor to Transformer for Large Language Models

Aug 09, 2023
Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, Furu Wei

Figure 1 for Retentive Network: A Successor to Transformer for Large Language Models
Figure 2 for Retentive Network: A Successor to Transformer for Large Language Models
Figure 3 for Retentive Network: A Successor to Transformer for Large Language Models
Figure 4 for Retentive Network: A Successor to Transformer for Large Language Models

In this work, we propose Retentive Network (RetNet) as a foundation architecture for large language models, simultaneously achieving training parallelism, low-cost inference, and good performance. We theoretically derive the connection between recurrence and attention. Then we propose the retention mechanism for sequence modeling, which supports three computation paradigms, i.e., parallel, recurrent, and chunkwise recurrent. Specifically, the parallel representation allows for training parallelism. The recurrent representation enables low-cost $O(1)$ inference, which improves decoding throughput, latency, and GPU memory without sacrificing performance. The chunkwise recurrent representation facilitates efficient long-sequence modeling with linear complexity, where each chunk is encoded parallelly while recurrently summarizing the chunks. Experimental results on language modeling show that RetNet achieves favorable scaling results, parallel training, low-cost deployment, and efficient inference. The intriguing properties make RetNet a strong successor to Transformer for large language models. Code will be available at

Viaarxiv icon

LongNet: Scaling Transformers to 1,000,000,000 Tokens

Jul 19, 2023
Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang, Shaohan Huang, Wenhui Wang, Nanning Zheng, Furu Wei

Figure 1 for LongNet: Scaling Transformers to 1,000,000,000 Tokens
Figure 2 for LongNet: Scaling Transformers to 1,000,000,000 Tokens
Figure 3 for LongNet: Scaling Transformers to 1,000,000,000 Tokens
Figure 4 for LongNet: Scaling Transformers to 1,000,000,000 Tokens

Scaling sequence length has become a critical demand in the era of large language models. However, existing methods struggle with either computational complexity or model expressivity, rendering the maximum sequence length restricted. To address this issue, we introduce LongNet, a Transformer variant that can scale sequence length to more than 1 billion tokens, without sacrificing the performance on shorter sequences. Specifically, we propose dilated attention, which expands the attentive field exponentially as the distance grows. LongNet has significant advantages: 1) it has a linear computation complexity and a logarithm dependency between any two tokens in a sequence; 2) it can be served as a distributed trainer for extremely long sequences; 3) its dilated attention is a drop-in replacement for standard attention, which can be seamlessly integrated with the existing Transformer-based optimization. Experiments results demonstrate that LongNet yields strong performance on both long-sequence modeling and general language tasks. Our work opens up new possibilities for modeling very long sequences, e.g., treating a whole corpus or even the entire Internet as a sequence.

* Work in progress 
Viaarxiv icon

Unleashing Cognitive Synergy in Large Language Models: A Task-Solving Agent through Multi-Persona Self-Collaboration

Jul 14, 2023
Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao Ge, Furu Wei, Heng Ji

Figure 1 for Unleashing Cognitive Synergy in Large Language Models: A Task-Solving Agent through Multi-Persona Self-Collaboration
Figure 2 for Unleashing Cognitive Synergy in Large Language Models: A Task-Solving Agent through Multi-Persona Self-Collaboration
Figure 3 for Unleashing Cognitive Synergy in Large Language Models: A Task-Solving Agent through Multi-Persona Self-Collaboration
Figure 4 for Unleashing Cognitive Synergy in Large Language Models: A Task-Solving Agent through Multi-Persona Self-Collaboration

Human intelligence thrives on the concept of cognitive synergy, where collaboration and information integration among different cognitive processes yield superior outcomes compared to individual cognitive processes in isolation. Although Large Language Models (LLMs) have demonstrated promising performance as general task-solving agents, they still struggle with tasks that require intensive domain knowledge and complex reasoning. In this work, we propose Solo Performance Prompting (SPP), which transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas. A cognitive synergist refers to an intelligent agent that collaborates with multiple minds, combining their individual strengths and knowledge, to enhance problem-solving and overall performance in complex tasks. By dynamically identifying and simulating different personas based on task inputs, SPP unleashes the potential of cognitive synergy in LLMs. We have discovered that assigning multiple, fine-grained personas in LLMs elicits better problem-solving abilities compared to using a single or fixed number of personas. We evaluate SPP on three challenging tasks: Trivia Creative Writing, Codenames Collaborative, and Logic Grid Puzzle, encompassing both knowledge-intensive and reasoning-intensive types. Unlike previous works, such as Chain-of-Thought, that solely enhance the reasoning abilities in LLMs, SPP effectively elicits internal knowledge acquisition abilities, reduces hallucination, and maintains strong reasoning capabilities. Code, data, and prompts can be found at:

* work in progress 
Viaarxiv icon