Aalto University, Espoo, Finland
Abstract:Training data reconstruction from KKT conditions has shown striking empirical success, yet it remains unclear when the resulting KKT equations have unique solutions and, even in identifiable regimes, how to reliably recover solutions by optimization. This work hereby focuses on these two complementary questions: identifiability and optimization. On the identifiability side, we discuss the sufficient conditions for KKT system of two-layer networks with polynomial activations to uniquely determine the training data, providing a theoretical explanation of when and why reconstruction is possible. On the optimization side, we introduce sample splitting, a curvature-aware refinement step applicable to general reconstruction objectives (not limited to KKT-based formulations): it creates additional descent directions to escape poor stationary points and refine solutions. Experiments demonstrate that augmenting several existing reconstruction methods with sample splitting consistently improves reconstruction performance.
Abstract:Deep learning models for medical data are typically trained using task specific objectives that encourage representations to collapse onto a small number of discriminative directions. While effective for individual prediction problems, this paradigm underutilizes the rich structure of clinical data and limits the transferability, stability, and interpretability of learned features. In this work, we propose dense feature learning, a representation centric framework that explicitly shapes the linear structure of medical embeddings. Our approach operates directly on embedding matrices, encouraging spectral balance, subspace consistency, and feature orthogonality through objectives defined entirely in terms of linear algebraic properties. Without relying on labels or generative reconstruction, dense feature learning produces representations with higher effective rank, improved conditioning, and greater stability across time. Empirical evaluations across longitudinal EHR data, clinical text, and multimodal patient representations demonstrate consistent improvements in downstream linear performance, robustness, and subspace alignment compared to supervised and self supervised baselines. These results suggest that learning to span clinical variation may be as important as learning to predict clinical outcomes, and position representation geometry as a first class objective in medical AI.
Abstract:Humans shift between different personas depending on social context. Large Language Models (LLMs) demonstrate a similar flexibility in adopting different personas and behaviors. Existing approaches, however, typically adapt such behavior through external knowledge such as prompting, retrieval-augmented generation (RAG), or fine-tuning. We ask: do LLMs really need external context or parameters to adapt to different behaviors, or do they already have such knowledge embedded in their parameters? In this work, we show that LLMs already contain persona-specialized subnetworks in their parameter space. Using small calibration datasets, we identify distinct activation signatures associated with different personas. Guided by these statistics, we develop a masking strategy that isolates lightweight persona subnetworks. Building on the findings, we further discuss: how can we discover opposing subnetwork from the model that lead to binary-opposing personas, such as introvert-extrovert? To further enhance separation in binary opposition scenarios, we introduce a contrastive pruning strategy that identifies parameters responsible for the statistical divergence between opposing personas. Our method is entirely training-free and relies solely on the language model's existing parameter space. Across diverse evaluation settings, the resulting subnetworks exhibit significantly stronger persona alignment than baselines that require external knowledge while being more efficient. Our findings suggest that diverse human-like behaviors are not merely induced in LLMs, but are already embedded in their parameter space, pointing toward a new perspective on controllable and interpretable personalization in large language models.
Abstract:Spatial embodied intelligence requires agents to act to acquire information under partial observability. While multimodal foundation models excel at passive perception, their capacity for active, self-directed exploration remains understudied. We propose Theory of Space, defined as an agent's ability to actively acquire information through self-directed, active exploration and to construct, revise, and exploit a spatial belief from sequential, partial observations. We evaluate this through a benchmark where the goal is curiosity-driven exploration to build an accurate cognitive map. A key innovation is spatial belief probing, which prompts models to reveal their internal spatial representations at each step. Our evaluation of state-of-the-art models reveals several critical bottlenecks. First, we identify an Active-Passive Gap, where performance drops significantly when agents must autonomously gather information. Second, we find high inefficiency, as models explore unsystematically compared to program-based proxies. Through belief probing, we diagnose that while perception is an initial bottleneck, global beliefs suffer from instability that causes spatial knowledge to degrade over time. Finally, using a false belief paradigm, we uncover Belief Inertia, where agents fail to update obsolete priors with new evidence. This issue is present in text-based agents but is particularly severe in vision-based models. Our findings suggest that current foundation models struggle to maintain coherent, revisable spatial beliefs during active exploration.
Abstract:Electrocardiography (ECG) serves as an indispensable diagnostic tool in clinical practice, yet existing multimodal large language models (MLLMs) remain unreliable for ECG interpretation, often producing plausible but clinically incorrect analyses. To address this, we propose ECG-R1, the first reasoning MLLM designed for reliable ECG interpretation via three innovations. First, we construct the interpretation corpus using \textit{Protocol-Guided Instruction Data Generation}, grounding interpretation in measurable ECG features and monograph-defined quantitative thresholds and diagnostic logic. Second, we present a modality-decoupled architecture with \textit{Interleaved Modality Dropout} to improve robustness and cross-modal consistency when either the ECG signal or ECG image is missing. Third, we present \textit{Reinforcement Learning with ECG Diagnostic Evidence Rewards} to strengthen evidence-grounded ECG interpretation. Additionally, we systematically evaluate the ECG interpretation capabilities of proprietary, open-source, and medical MLLMs, and provide the first quantitative evidence that severe hallucinations are widespread, suggesting that the public should not directly trust these outputs without independent verification. Code and data are publicly available at \href{https://github.com/PKUDigitalHealth/ECG-R1}{here}, and an online platform can be accessed at \href{http://ai.heartvoice.com.cn/ECG-R1/}{here}.
Abstract:We introduce Kimi K2.5, an open-source multimodal agentic model designed to advance general agentic intelligence. K2.5 emphasizes the joint optimization of text and vision so that two modalities enhance each other. This includes a series of techniques such as joint text-vision pre-training, zero-vision SFT, and joint text-vision reinforcement learning. Building on this multimodal foundation, K2.5 introduces Agent Swarm, a self-directed parallel agent orchestration framework that dynamically decomposes complex tasks into heterogeneous sub-problems and executes them concurrently. Extensive evaluations show that Kimi K2.5 achieves state-of-the-art results across various domains including coding, vision, reasoning, and agentic tasks. Agent Swarm also reduces latency by up to $4.5\times$ over single-agent baselines. We release the post-trained Kimi K2.5 model checkpoint to facilitate future research and real-world applications of agentic intelligence.
Abstract:Self-supervised learning (SSL) models have achieved impressive results across many speech tasks, yet child automatic speech recognition (ASR) remains challenging due to limited data and pretraining domain mismatch. Fine-tuning SSL models on child speech induces shifts in the representation space. We hypothesize that delta SSL embeddings, defined as the differences between embeddings from a finetuned model and those from its pretrained counterpart, encode task-specific information that complements finetuned features from another SSL model. We evaluate multiple fusion strategies on the MyST childrens corpus using different models. Results show that delta embedding fusion with WavLM yields up to a 10 percent relative WER reduction for HuBERT and a 4.4 percent reduction for W2V2, compared to finetuned embedding fusion. Notably, fusing WavLM with delta W2V2 embeddings achieves a WER of 9.64, setting a new state of the art among SSL models on the MyST corpus. These findings demonstrate the effectiveness of delta embeddings and highlight feature fusion as a promising direction for advancing child ASR.
Abstract:Evaluating whether multimodal large language models truly understand long-form scientific papers remains challenging: answer-only metrics and synthetic "Needle-In-A-Haystack" tests often reward answer matching without requiring a causal, evidence-linked reasoning trace in the document. We propose the "Fish-in-the-Ocean" (FITO) paradigm, which requires models to construct explicit cross-modal evidence chains within native scientific documents. To operationalize FITO, we build SIN-Data, a scientific interleaved corpus that preserves the native interleaving of text and figures. On top of it, we construct SIN-Bench with four progressive tasks covering evidence discovery (SIN-Find), hypothesis verification (SIN-Verify), grounded QA (SIN-QA), and evidence-anchored synthesis (SIN-Summary). We further introduce "No Evidence, No Score", scoring predictions when grounded to verifiable anchors and diagnosing evidence quality via matching, relevance, and logic. Experiments on eight MLLMs show that grounding is the primary bottleneck: Gemini-3-pro achieves the best average overall score (0.573), while GPT-5 attains the highest SIN-QA answer accuracy (0.767) but underperforms on evidence-aligned overall scores, exposing a gap between correctness and traceable support.
Abstract:Search and recommendation (S&R) are core to online platforms, addressing explicit intent through queries and modeling implicit intent from behaviors, respectively. Their complementary roles motivate a unified modeling paradigm. Early studies to unify S&R adopt shared encoders with task-specific heads, while recent efforts reframe item ranking in both S&R as conditional generation. The latter holds particular promise, enabling end-to-end optimization and leveraging the semantic understanding of LLMs. However, existing methods rely on full fine-tuning, which is computationally expensive and limits scalability. Parameter-efficient fine-tuning (PEFT) offers a more practical alternative but faces two critical challenges in unifying S&R: (1) gradient conflicts across tasks due to divergent optimization objectives, and (2) shifts in user intent understanding caused by overfitting to fine-tuning data, which distort general-domain knowledge and weaken LLM reasoning. To address the above issues, we propose Gradient Multi-Subspace Tuning (GEMS), a novel framework that unifies S&R with LLMs while alleviating gradient conflicts and preserving general-domain knowledge. GEMS introduces (1) \textbf{Multi-Subspace Decomposition}, which disentangles shared and task-specific optimization signals into complementary low-rank subspaces, thereby reducing destructive gradient interference, and (2) \textbf{Null-Space Projection}, which constrains parameter updates to a subspace orthogonal to the general-domain knowledge space, mitigating shifts in user intent understanding. Extensive experiments on benchmark datasets show that GEMS consistently outperforms the state-of-the-art baselines across both search and recommendation tasks, achieving superior effectiveness.
Abstract:Triple-based Iterative Retrieval-Augmented Generation (iRAG) mitigates document-level noise for multi-hop question answering. However, existing methods still face limitations: (i) greedy single-path expansion, which propagates early errors and fails to capture parallel evidence from different reasoning branches, and (ii) granularity-demand mismatch, where a single evidence representation struggles to balance noise control with contextual sufficiency. In this paper, we propose the Construction-Integration Retrieval and Adaptive Generation model, CIRAG. It introduces an Iterative Construction-Integration module that constructs candidate triples and history-conditionally integrates them to distill core triples and generate the next-hop query. This module mitigates the greedy trap by preserving multiple plausible evidence chains. Besides, we propose an Adaptive Cascaded Multi-Granularity Generation module that progressively expands contextual evidence based on the problem requirements, from triples to supporting sentences and full passages. Moreover, we introduce Trajectory Distillation, which distills the teacher model's integration policy into a lightweight student, enabling efficient and reliable long-horizon reasoning. Extensive experiments demonstrate that CIRAG achieves superior performance compared to existing iRAG methods.