In dyadic speaker-listener interactions, the listener's head reactions along with the speaker's head movements, constitute an important non-verbal semantic expression together. The listener Head generation task aims to synthesize responsive listener's head videos based on audios of the speaker and reference images of the listener. Compared to the Talking-head generation, it is more challenging to capture the correlation clues from the speaker's audio and visual information. Following the ViCo baseline scheme, we propose a high-performance solution by enhancing the hierarchical semantic extraction capability of the audio encoder module and improving the decoder part, renderer and post-processing modules. Our solution gets the first place on the official leaderboard for the track of listening head generation. This paper is a technical report of ViCo@2023 Conversational Head Generation Challenge in ACM Multimedia 2023 conference.
Generative chat models, such as ChatGPT and GPT-4, have revolutionized natural language generation (NLG) by incorporating instructions and human feedback to achieve significant performance improvements. However, the lack of standardized evaluation benchmarks for chat models, particularly for Chinese and domain-specific models, hinders their assessment and progress. To address this gap, we introduce the Chinese Generative Chat Evaluation (CGCE) benchmark, focusing on general and financial domains. The CGCE benchmark encompasses diverse tasks, including 200 questions in the general domain and 150 specific professional questions in the financial domain. Manual scoring evaluates factors such as accuracy, coherence, expression clarity, and completeness. The CGCE benchmark provides researchers with a standardized framework to assess and compare Chinese generative chat models, fostering advancements in NLG research.
In recent years, pre-trained language models have undergone rapid development with the emergence of large-scale models. However, there is a lack of open-sourced chat models specifically designed for the Chinese language, especially in the field of Chinese finance, at the scale of hundreds of billions. To address this gap, we introduce XuanYuan 2.0, the largest Chinese chat model to date, built upon the BLOOM-176B architecture. Additionally, we propose a novel training method called hybrid-tuning to mitigate catastrophic forgetting. By combining general-domain with domain-specific knowledge and integrating the stages of pre-training and fine-tuning, XuanYuan 2.0 is capable of providing accurate and contextually appropriate responses in the Chinese financial domain.
Large-scale language models like ChatGPT and GPT-4 have gained attention for their impressive conversational and generative capabilities. However, the creation of supervised paired question-answering data for instruction tuning presents formidable challenges. This endeavor necessitates substantial human effort for data annotation and wrestles with issues concerning data quality, diversity, accuracy, and other related factors. To overcome these obstacles, we introduce an innovative framework named Self-QA, which replaces the traditional practice of human-written instruction seeds with a vast amount of unsupervised knowledge, enabling the model to generate a larger quantity of correct and domain-specific instruction data. The effectiveness of our proposed method is demonstrated through experiments conducted on unsupervised corpora from various domains.
In Causal Discovery with latent variables, We define two data paradigms: definite data: a single-skeleton structure with observed nodes single-value, and indefinite data: a set of multi-skeleton structures with observed nodes multi-value. Multi,skeletons induce low sample utilization and multi values induce incapability of the distribution assumption, both leading that recovering causal relations from indefinite data is, as of yet, largely unexplored. We design the causal strength variational model to settle down these two problems. Specifically, we leverage the causal strength instead of independent noise as latent variable to mediate evidence lower bound. By this design ethos, The causal strength of different skeletons is regarded as a distribution and can be expressed as a single-valued causal graph matrix. Moreover, considering the latent confounders, we disentangle the causal graph G into two relatisubgraphs O and C. O contains pure relations between observed nodes, while C represents the relations from latent variables to observed nodes. We summarize the above designs as Confounding Disentanglement Causal Discovery (biCD), which is tailored to learn causal representation from indefinite data under the latent confounding. Finally, we conduct comprehensive experiments on synthetic and real-world data to demonstrate the effectiveness of our method.
News recommendation aims to predict click behaviors based on user behaviors. How to effectively model the user representations is the key to recommending preferred news. Existing works are mostly focused on improvements in the supervised fine-tuning stage. However, there is still a lack of PLM-based unsupervised pre-training methods optimized for user representations. In this work, we propose an unsupervised pre-training paradigm with two tasks, i.e. user behavior masking and user behavior generation, both towards effective user behavior modeling. Firstly, we introduce the user behavior masking pre-training task to recover the masked user behaviors based on their contextual behaviors. In this way, the model could capture a much stronger and more comprehensive user news reading pattern. Besides, we incorporate a novel auxiliary user behavior generation pre-training task to enhance the user representation vector derived from the user encoder. We use the above pre-trained user modeling encoder to obtain news and user representations in downstream fine-tuning. Evaluations on the real-world news benchmark show significant performance improvements over existing baselines.
Planar object tracking is a critical computer vision problem and has drawn increasing interest owing to its key roles in robotics, augmented reality, etc. Despite rapid progress, its further development, especially in the deep learning era, is largely hindered due to the lack of large-scale challenging benchmarks. Addressing this, we introduce PlanarTrack, a large-scale challenging planar tracking benchmark. Specifically, PlanarTrack consists of 1,000 videos with more than 490K images. All these videos are collected in complex unconstrained scenarios from the wild, which makes PlanarTrack, compared with existing benchmarks, more challenging but realistic for real-world applications. To ensure the high-quality annotation, each frame in PlanarTrack is manually labeled using four corners with multiple-round careful inspection and refinement. To our best knowledge, PlanarTrack, to date, is the largest and most challenging dataset dedicated to planar object tracking. In order to analyze the proposed PlanarTrack, we evaluate 10 planar trackers and conduct comprehensive comparisons and in-depth analysis. Our results, not surprisingly, demonstrate that current top-performing planar trackers degenerate significantly on the challenging PlanarTrack and more efforts are needed to improve planar tracking in the future. In addition, we further derive a variant named PlanarTrack$_{\mathbf{BB}}$ for generic object tracking from PlanarTrack. Our evaluation of 10 excellent generic trackers on PlanarTrack$_{\mathrm{BB}}$ manifests that, surprisingly, PlanarTrack$_{\mathrm{BB}}$ is even more challenging than several popular generic tracking benchmarks and more attention should be paid to handle such planar objects, though they are rigid. All benchmarks and evaluations will be released at the project webpage.
Metaverse is expected to create a virtual world closely connected with reality to provide users with immersive experience with the support of 5G high data rate communication technique. A huge amount of data in physical world needs to be synchronized to the virtual world to provide immersive experience for users, and there will be higher requirements on coverage to include more users into Metaverse. However, 5G signal suffers severe attenuation, which makes it more expensive to maintain the same coverage. Unmanned aerial vehicle (UAV) is a promising candidate technique for future implementation of Metaverse as a low-cost and high-mobility platform for communication devices. In this paper, we propose a proximal policy optimization (PPO) based double-agent cooperative reinforcement learning method for channel allocation and trajectory control of UAV to collect and synchronize data from the physical world to the virtual world, and expand the coverage of Metaverse services economically. Simulation results show that our proposed method is able to achieve better performance compared to the benchmark approaches.
To enable the pre-trained models to be fine-tuned with local data on edge devices without sharing data with the cloud, we design an efficient split fine-tuning (SFT) framework for edge and cloud collaborative learning. We propose three novel techniques in this framework. First, we propose a matrix decomposition-based method to compress the intermediate output of a neural network to reduce the communication volume between the edge device and the cloud server. Second, we eliminate particular links in the model without affecting the convergence performance in fine-tuning. Third, we implement our system atop PyTorch to allow users to easily extend their existing training scripts to enjoy the efficient edge and cloud collaborative learning. Experiments results on 9 NLP datasets show that our framework can reduce the communication traffic by 96 times with little impact on the model accuracy.