Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed
Online Decision Trees with Fairness

Oct 15, 2020
Wenbin Zhang, Liang Zhao

* arXiv admin note: substantial text overlap with arXiv:1907.07237 

  Access Paper or Ask Questions

Disentangled Dynamic Graph Deep Generation

Oct 14, 2020
Wenbin Zhang, Liming Zhang, Dieter Pfoser, Liang Zhao


  Access Paper or Ask Questions

FedAT: A Communication-Efficient Federated Learning Method with Asynchronous Tiers under Non-IID Data

Oct 12, 2020
Zheng Chai, Yujing Chen, Liang Zhao, Yue Cheng, Huzefa Rangwala


  Access Paper or Ask Questions

A new network-base high-level data classification methodology (Quipus) by modeling attribute-attribute interactions

Sep 28, 2020
Esteban Wilfredo Vilca Zuñiga, Liang Zhao


  Access Paper or Ask Questions

Graph-based Multi-hop Reasoning for Long Text Generation

Sep 28, 2020
Liang Zhao, Jingjing Xu, Junyang Lin, Yichang Zhang, Hongxia Yang, Xu Sun


  Access Paper or Ask Questions

Factorized Deep Generative Models for Trajectory Generation with Spatiotemporal-Validity Constraints

Sep 20, 2020
Liming Zhang, Liang Zhao, Dieter Pfoser


  Access Paper or Ask Questions

A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality

Sep 16, 2020
Esteban Vilca, Liang Zhao


  Access Paper or Ask Questions

Tunable Subnetwork Splitting for Model-parallelism of Neural Network Training

Sep 16, 2020
Junxiang Wang, Zheng Chai, Yue Cheng, Liang Zhao

* ICML 2020 Workshop on "Beyond first-order methods in ML systems" 

  Access Paper or Ask Questions

Event Prediction in the Big Data Era: A Systematic Survey

Aug 04, 2020
Liang Zhao


  Access Paper or Ask Questions

Event Prediction in Big Data Era: A Systematic Survey

Jul 21, 2020
Liang Zhao


  Access Paper or Ask Questions

A Systematic Survey on Deep Generative Models for Graph Generation

Jul 18, 2020
Xiaojie Guo, Liang Zhao


  Access Paper or Ask Questions

TG-GAN: Continuous-time Temporal Graph Generation with Deep Generative Models

Jun 09, 2020
Liming Zhang, Liang Zhao, Shan Qin, Dieter Pfoser


  Access Paper or Ask Questions

Interpretable Deep Graph Generation with Node-Edge Co-Disentanglement

Jun 09, 2020
Xiaojie Guo, Liang Zhao, Zhao Qin, Lingfei Wu, Amarda Shehu, Yanfang Ye

* This paper has been accepted by KDD 2020 

  Access Paper or Ask Questions

TG-GAN: Deep Generative Models for Continuously-time Temporal Graph Generation

May 17, 2020
Liming Zhang, Liang Zhao, Shan Qin, Dieter Pfoser


  Access Paper or Ask Questions

Chronnet: a network-based model for spatiotemporal data analysis

Apr 23, 2020
Leonardo N. Ferreira, Didier A. Vega-Oliveros, Moshe Cotacallapa, Manoel F. Cardoso, Marcos G. Quiles, Liang Zhao, Elbert E. N. Macau


  Access Paper or Ask Questions

Generating Tertiary Protein Structures via an Interpretative Variational Autoencoder

Apr 08, 2020
Xiaojie Guo, Sivani Tadepalli, Liang Zhao, Amarda Shehu


  Access Paper or Ask Questions

Dynamic Reconstruction of Deformable Soft-tissue with Stereo Scope in Minimal Invasive Surgery

Mar 22, 2020
Jingwei Song, Jun Wang, Liang Zhao, Shoudong Huang, Gamini Dissanayake

* Published in IROS2017 ()2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. arXiv admin note: text overlap with arXiv:1803.02009 

  Access Paper or Ask Questions

Deep Multi-attributed Graph Translation with Node-Edge Co-evolution

Mar 22, 2020
Xiaojie Guo, Liang Zhao, Cameron Nowzari, Setareh Rafatirad, Houman Homayoun, Sai Manoj Pudukotai Dinakarrao

* International Conference on Data Mining (ICDM), Beijing, China, 2019, pp. 250-259 
* This paper has been accepted by International Conference on Data Mining (ICDM), Beijing, China, 2019 

  Access Paper or Ask Questions

Bridging the Gap between Spatial and Spectral Domains: A Survey on Graph Neural Networks

Mar 01, 2020
Zhiqian Chen, Fanglan Chen, Lei Zhang, Taoran Ji, Kaiqun Fu, Liang Zhao, Feng Chen, Chang-Tien Lu


  Access Paper or Ask Questions

Chaotic Phase Synchronization and Desynchronization in an Oscillator Network for Object Selection

Feb 13, 2020
Fabricio A Breve, Marcos G Quiles, Liang Zhao, Elbert E. N. Macau

* BREVE, FA; ZHAO, L; QUILES, MG; MACAU, EEN. Chaotic Phase Synchronization and Desynchronization in an Oscillator Network for Object Selection. Neural Networks, v. 22, p. 728-737, 2009 

  Access Paper or Ask Questions

Particle Competition and Cooperation for Semi-Supervised Learning with Label Noise

Feb 12, 2020
Fabricio Aparecido Breve, Liang Zhao, Marcos Gonçalves Quiles

* Neurocomputing (Amsterdam), v.160, p.63 - 72, 2015 

  Access Paper or Ask Questions

Code-Bridged Classifier (CBC): A Low or Negative Overhead Defense for Making a CNN Classifier Robust Against Adversarial Attacks

Jan 16, 2020
Farnaz Behnia, Ali Mirzaeian, Mohammad Sabokrou, Sai Manoj, Tinoosh Mohsenin, Khaled N. Khasawneh, Liang Zhao, Houman Homayoun, Avesta Sasan

* 6 pages, Accepted and to appear in ISQED 2020 

  Access Paper or Ask Questions

Automated Analysis of Femoral Artery Calcification Using Machine Learning Techniques

Dec 12, 2019
Liang Zhao, Brendan Odigwe, Susan Lessner, Daniel G. Clair, Firas Mussa, Homayoun Valafar

* 6 pages, submitted for consideration to CSCI 2016 

  Access Paper or Ask Questions

Learning to Recommend via Meta Parameter Partition

Dec 04, 2019
Liang Zhao, Yang Wang, Daxiang Dong, Hao Tian


  Access Paper or Ask Questions

Efficient Global String Kernel with Random Features: Beyond Counting Substructures

Nov 25, 2019
Lingfei Wu, Ian En-Hsu Yen, Siyu Huo, Liang Zhao, Kun Xu, Liang Ma, Shouling Ji, Charu Aggarwal

* KDD'19 Oral Paper, Data and Code link available in the paper 

  Access Paper or Ask Questions

Scalable Global Alignment Graph Kernel Using Random Features: From Node Embedding to Graph Embedding

Nov 25, 2019
Lingfei Wu, Ian En-Hsu Yen, Zhen Zhang, Kun Xu, Liang Zhao, Xi Peng, Yinglong Xia, Charu Aggarwal

* KDD'19, Oral Paper, Data and Code link available in the paper 

  Access Paper or Ask Questions