corresponding author
Abstract:Existing video inference (VI) enhancement methods typically aim to improve performance by scaling up model sizes and employing sophisticated network architectures. While these approaches demonstrated state-of-the-art performance, they often overlooked the trade-off of resource efficiency and inference effectiveness, leading to inefficient resource utilization and suboptimal inference performance. To address this problem, a fuzzy controller (FC-r) is developed based on key system parameters and inference-related metrics. Guided by the FC-r, a VI enhancement framework is proposed, where the spatiotemporal correlation of targets across adjacent video frames is leveraged. Given the real-time resource conditions of the target device, the framework can dynamically switch between models of varying scales during VI. Experimental results demonstrate that the proposed method effectively achieves a balance between resource utilization and inference performance.
Abstract:Effective memory management is essential for large language model agents to navigate long-horizon tasks. Recent research has explored using Reinforcement Learning to develop specialized memory manager agents. However, existing approaches rely on final task performance as the primary reward, which results in severe reward sparsity and ineffective credit assignment, providing insufficient guidance for individual memory operations. To this end, we propose Fine-Mem, a unified framework designed for fine-grained feedback alignment. First, we introduce a Chunk-level Step Reward to provide immediate step-level supervision via auxiliary chunk-specific question answering tasks. Second, we devise Evidence-Anchored Reward Attribution to redistribute global rewards by anchoring credit to key memory operations, based on the specific memory items utilized as evidence in reasoning. Together, these components enable stable policy optimization and align local memory operations with the long-term utility of memory. Experiments on Memalpha and MemoryAgentBench demonstrate that Fine-Mem consistently outperforms strong baselines, achieving superior success rates across various sub-tasks. Further analysis reveals its adaptability and strong generalization capabilities across diverse model configurations and backbones.




Abstract:We present an RL-central framework for Language and Vision Assistants (RLLaVA) with its formulation of Markov decision process (MDP). RLLaVA decouples RL algorithmic logic from model architecture and distributed execution, supporting researchers in implementing new RL algorithms with minimal code, and to plug in a broad family of RL methods and vision-language models (VLMs) while remaining agnostic to specific training and inference engines. RLLaVA makes resource-efficient training of 1B--7B models feasible on common GPUs; notably, 4B-scale models can be trained end-to-end with full-parameter updates on a single 24GB GPU. Experiments on multi-modal and agentic tasks demonstrate that RLLaVA has task extensibility, and the models trained with it consistently improve performance over base models, competitive with other specially engineered RL frameworks. The code is available at https://github.com/TinyLoopX/RLLaVA.




Abstract:Target classification is a fundamental task in radar systems, and its performance critically depends on the quantization precision of the signal. While high-precision quantization (e.g. 16-bit) is well established, 1-bit quantization offers distinct advantages by enabling direct sampling at high frequencies and eliminating complex intermediate stages. However, its extreme quantization leads to significant information loss. Although higher sampling rates can compensate for this loss, such oversampling is impractical at the high frequencies targeted for direct sampling. To achieve high-accuracy classification directly from 1-bit radar data under the same sampling rate, this paper proposes a novel two-stage deep learning framework, CF-Net. First, we introduce a self-supervised pre-training strategy based on a dual-branch U-Net architecture. This network learns to restore high-fidelity 16-bit images from their 1-bit counterparts via a cross-feature reconstruction task, forcing the 1-bit encoder to learn robust features despite extreme quantization. Subsequently, this pre-trained encoder is repurposed and fine-tuned for the downstream multi-class target classification task. Experiments on two radar target datasets demonstrate that CF-Net can effectively extract discriminative features from 1-bit imagery, achieving comparable and even superior accuracy to some 16-bit methods without oversampling.




Abstract:With the rapid advancement of Large Models, numerous text-and-vision-fused Multimodal Large Models (MLMs) have emerged. However, these MLMs remain susceptible to informational interference in visual perception, particularly in color perception, which introduces an additional risk of hallucination. To validate this hypothesis, we introduce the "What Color Is It" dataset, a novel benchmark constructed using a simple method to trigger single-modality visual hallucination in MLMs. Based on this dataset, we further investigate the underlying causes of hallucination in the visual modality of MLMs and propose potential solutions to enhance their robustness.
Abstract:Joint multilingual instruction tuning is a widely adopted approach to improve the multilingual instruction-following ability and downstream performance of large language models (LLMs), but the resulting multilingual capability remains highly sensitive to the composition and selection of the training data. Existing selection methods, often based on features like text quality, diversity, or task relevance, typically overlook the intrinsic linguistic structure of multilingual data. In this paper, we propose LangGPS, a lightweight two-stage pre-selection framework guided by language separability which quantifies how well samples in different languages can be distinguished in the model's representation space. LangGPS first filters training data based on separability scores and then refines the subset using existing selection methods. Extensive experiments across six benchmarks and 22 languages demonstrate that applying LangGPS on top of existing selection methods improves their effectiveness and generalizability in multilingual training, especially for understanding tasks and low-resource languages. Further analysis reveals that highly separable samples facilitate the formation of clearer language boundaries and support faster adaptation, while low-separability samples tend to function as bridges for cross-lingual alignment. Besides, we also find that language separability can serve as an effective signal for multilingual curriculum learning, where interleaving samples with diverse separability levels yields stable and generalizable gains. Together, we hope our work offers a new perspective on data utility in multilingual contexts and support the development of more linguistically informed LLMs.
Abstract:The remarkable progress of Large Language Models (LLMs) presents promising opportunities for Verilog code generation which is significantly important for automated circuit design. The lacking of meaningful functional rewards hinders the preference optimization based on Reinforcement Learning (RL) for producing functionally correct Verilog code. In this paper, we propose Signal-Aware Learning for Verilog code generation (QiMeng-SALV) by leveraging code segments of functionally correct output signal to optimize RL training. Considering Verilog code specifies the structural interconnection of hardware gates and wires so that different output signals are independent, the key insight of QiMeng-SALV is to extract verified signal-aware implementations in partially incorrect modules, so as to enhance the extraction of meaningful functional rewards. Roughly, we verify the functional correctness of signals in generated module by comparing with that of reference module in the training data. Then abstract syntax tree (AST) is employed to identify signal-aware code segments which can provide meaningful functional rewards from erroneous modules. Finally, we introduce signal-aware DPO which is optimized on the correct signal-level code segments, thereby preventing noise and interference from incorrect signals. The proposed QiMeng-SALV underscores the paradigm shift from conventional module-level to fine-grained signal-level optimization in Verilog code generation, addressing the issue of insufficient functional rewards. Experiments demonstrate that our method achieves state-of-the-art performance on VerilogEval and RTLLM, with a 7B parameter model matching the performance of the DeepSeek v3 671B model and significantly outperforming the leading open-source model CodeV trained on the same dataset. Our code is available at https://github.com/zy1xxx/SALV.
Abstract:Diffusion models manifest evident benefits across diverse domains, yet their high sampling cost, requiring dozens of sequential model evaluations, remains a major limitation. Prior efforts mainly accelerate sampling via optimized solvers or distillation, which treat each query independently. In contrast, we reduce total number of steps by sharing early-stage sampling across semantically similar queries. To enable such efficiency gains without sacrificing quality, we propose SAGE, a semantic-aware shared sampling framework that integrates a shared sampling scheme for efficiency and a tailored training strategy for quality preservation. Extensive experiments show that SAGE reduces sampling cost by 25.5%, while improving generation quality with 5.0% lower FID, 5.4% higher CLIP, and 160% higher diversity over baselines.
Abstract:Structural pruning has been widely studied for its effectiveness in compressing neural networks. However, existing methods often neglect the interconnections among parameters. To address this limitation, this paper proposes a structural pruning framework termed Optimal Brain Connection. First, we introduce the Jacobian Criterion, a first-order metric for evaluating the saliency of structural parameters. Unlike existing first-order methods that assess parameters in isolation, our criterion explicitly captures both intra-component interactions and inter-layer dependencies. Second, we propose the Equivalent Pruning mechanism, which utilizes autoencoders to retain the contributions of all original connection--including pruned ones--during fine-tuning. Experimental results demonstrate that the Jacobian Criterion outperforms several popular metrics in preserving model performance, while the Equivalent Pruning mechanism effectively mitigates performance degradation after fine-tuning. Code: https://github.com/ShaowuChen/Optimal_Brain_Connection
Abstract:Large Language Models (LLMs) have made remarkable progress in enhancing step-by-step reasoning through reinforcement learning. However, the Group Relative Policy Optimization (GRPO) algorithm, which relies on sparse reward rules, often encounters the issue of identical rewards within groups, leading to the advantage collapse problem. Existing works typically address this challenge from two perspectives: enforcing model reflection to enhance response diversity, and introducing internal feedback to augment the training signal (advantage). In this work, we begin by analyzing the limitations of model reflection and investigating the policy entropy of responses at the fine-grained sample level. Based on our experimental findings, we propose the EDGE-GRPO algorithm, which adopts \textbf{E}ntropy-\textbf{D}riven Advantage and \textbf{G}uided \textbf{E}rror Correction to effectively mitigate the problem of advantage collapse. Extensive experiments on several main reasoning benchmarks demonstrate the effectiveness and superiority of our approach. It is available at https://github.com/ZhangXJ199/EDGE-GRPO.