corresponding author
Abstract:Universal approximation theorem (UAT) is a fundamental theory for deep neural networks (DNNs), demonstrating their powerful representation capacity to represent and approximate any function. The analyses and proofs of UAT are based on traditional network with only linear and nonlinear activation functions, but omitting normalization layers, which are commonly employed to enhance the training of modern networks. This paper conducts research on UAT of DNNs with normalization layers for the first time. We theoretically prove that an infinitely wide network -- composed solely of parallel layer normalization (PLN) and linear layers -- has universal approximation capacity. Additionally, we investigate the minimum number of neurons required to approximate $L$-Lipchitz continuous functions, with a single hidden-layer network. We compare the approximation capacity of PLN with traditional activation functions in theory. Different from the traditional activation functions, we identify that PLN can act as both activation function and normalization in deep neural networks at the same time. We also find that PLN can improve the performance when replacing LN in transformer architectures, which reveals the potential of PLN used in neural architectures.
Abstract:Conversational recommendation systems (CRSs) use multi-turn interaction to capture user preferences and provide personalized recommendations. A fundamental challenge in CRSs lies in effectively understanding user preferences from conversations. User preferences can be multifaceted and complex, posing significant challenges for accurate recommendations even with access to abundant external knowledge. While interaction with users can clarify their true preferences, frequent user involvement can lead to a degraded user experience. To address this problem, we propose a generative reward model based simulated user, named GRSU, for automatic interaction with CRSs. The simulated user provides feedback to the items recommended by CRSs, enabling them to better capture intricate user preferences through multi-turn interaction. Inspired by generative reward models, we design two types of feedback actions for the simulated user: i.e., generative item scoring, which offers coarse-grained feedback, and attribute-based item critique, which provides fine-grained feedback. To ensure seamless integration, these feedback actions are unified into an instruction-based format, allowing the development of a unified simulated user via instruction tuning on synthesized data. With this simulated user, automatic multi-turn interaction with CRSs can be effectively conducted. Furthermore, to strike a balance between effectiveness and efficiency, we draw inspiration from the paradigm of reward-guided search in complex reasoning tasks and employ beam search for the interaction process. On top of this, we propose an efficient candidate ranking method to improve the recommendation results derived from interaction. Extensive experiments on public datasets demonstrate the effectiveness, efficiency, and transferability of our approach.
Abstract:Recently, improving the reasoning ability of large multimodal models (LMMs) through reinforcement learning has made great progress. However, most existing works are based on highly reasoning-intensive datasets such as mathematics and code, and researchers generally choose large-scale models as the foundation. We argue that exploring small-scale models' reasoning capabilities remains valuable for researchers with limited computational resources. Moreover, enabling models to explain their reasoning processes on general question-answering datasets is equally meaningful. Therefore, we present the small-scale video reasoning model TinyLLaVA-Video-R1. Based on TinyLLaVA-Video, a traceably trained video understanding model with no more than 4B parameters, it not only demonstrates significantly improved reasoning and thinking capabilities after using reinforcement learning on general Video-QA datasets, but also exhibits the emergent characteristic of "aha moments". Furthermore, we share a series of experimental findings, aiming to provide practical insights for future exploration of video reasoning (thinking) abilities in small-scale models. It is available at https://github.com/ZhangXJ199/TinyLLaVA-Video-R1.
Abstract:Research is a fundamental process driving the advancement of human civilization, yet it demands substantial time and effort from researchers. In recent years, the rapid development of artificial intelligence (AI) technologies has inspired researchers to explore how AI can accelerate and enhance research. To monitor relevant advancements, this paper presents a systematic review of the progress in this domain. Specifically, we organize the relevant studies into three main categories: hypothesis formulation, hypothesis validation, and manuscript publication. Hypothesis formulation involves knowledge synthesis and hypothesis generation. Hypothesis validation includes the verification of scientific claims, theorem proving, and experiment validation. Manuscript publication encompasses manuscript writing and the peer review process. Furthermore, we identify and discuss the current challenges faced in these areas, as well as potential future directions for research. Finally, we also offer a comprehensive overview of existing benchmarks and tools across various domains that support the integration of AI into the research process. We hope this paper serves as an introduction for beginners and fosters future research. Resources have been made publicly available at https://github.com/zkzhou126/AI-for-Research.
Abstract:In the rapidly evolving landscape of neural network security, the resilience of neural networks against bit-flip attacks (i.e., an attacker maliciously flips an extremely small amount of bits within its parameter storage memory system to induce harmful behavior), has emerged as a relevant area of research. Existing studies suggest that quantization may serve as a viable defense against such attacks. Recognizing the documented susceptibility of real-valued neural networks to such attacks and the comparative robustness of quantized neural networks (QNNs), in this work, we introduce BFAVerifier, the first verification framework designed to formally verify the absence of bit-flip attacks or to identify all vulnerable parameters in a sound and rigorous manner. BFAVerifier comprises two integral components: an abstraction-based method and an MILP-based method. Specifically, we first conduct a reachability analysis with respect to symbolic parameters that represent the potential bit-flip attacks, based on a novel abstract domain with a sound guarantee. If the reachability analysis fails to prove the resilience of such attacks, then we encode this verification problem into an equivalent MILP problem which can be solved by off-the-shelf solvers. Therefore, BFAVerifier is sound, complete, and reasonably efficient. We conduct extensive experiments, which demonstrate its effectiveness and efficiency across various network architectures, quantization bit-widths, and adversary capabilities.
Abstract:Self-supervised learning (SSL) methods via joint embedding architectures have proven remarkably effective at capturing semantically rich representations with strong clustering properties, magically in the absence of label supervision. Despite this, few of them have explored leveraging these untapped properties to improve themselves. In this paper, we provide an evidence through various metrics that the encoder's output $encoding$ exhibits superior and more stable clustering properties compared to other components. Building on this insight, we propose a novel positive-feedback SSL method, termed Representation Soft Assignment (ReSA), which leverages the model's clustering properties to promote learning in a self-guided manner. Extensive experiments on standard SSL benchmarks reveal that models pretrained with ReSA outperform other state-of-the-art SSL methods by a significant margin. Finally, we analyze how ReSA facilitates better clustering properties, demonstrating that it effectively enhances clustering performance at both fine-grained and coarse-grained levels, shaping representations that are inherently more structured and semantically meaningful.
Abstract:We present the TinyLLaVA-Video, a video understanding model with parameters not exceeding 4B that processes video sequences in a simple manner, without the need for complex architectures, supporting both fps sampling and uniform frame sampling. Our model is characterized by modularity and scalability, allowing training and inference with limited computational resources and enabling users to replace components based on their needs. We validate the effectiveness of this framework through experiments, the best model achieving performance comparable to certain existing 7B models on multiple video understanding benchmarks. The code and training recipes are fully open source, with all components and training data publicly available. We hope this work can serve as a baseline for practitioners exploring small-scale multimodal models for video understanding. It is available at \url{https://github.com/ZhangXJ199/TinyLLaVA-Video}.
Abstract:Active reconfigurable intelligent surface (A-RIS) aided integrated sensing and communications (ISAC) system has been considered as a promising paradigm to improve spectrum efficiency. However, massive energy-hungry radio frequency (RF) chains hinder its large-scale deployment. To address this issue, an A-RIS-aided ISAC system with antenna selection (AS) is proposed in this work, where a target is sensed while multiple communication users are served with specifically selected antennas. Specifically, a cuckoo search-based scheme is first utilized to select the antennas associated with high-gain channels. Subsequently, with the properly selected antennas, the weighted sum-rate (WSR) of the system is optimized under the condition of radar probing power level, power budget for the A-RIS and transmitter. To solve the highly non-convex optimization problem, we develop an efficient algorithm based on weighted minimum mean square error (WMMSE) and fractional programming (FP). Simulation results show that the proposed AS scheme and the algorithm are effective, which reduce the number of RF chains without significant performance degradation.
Abstract:Despite the significant improvements achieved by large language models (LLMs) in English reasoning tasks, these models continue to struggle with multilingual reasoning. Recent studies leverage a full-parameter and two-stage training paradigm to teach models to first understand non-English questions and then reason. However, this method suffers from both substantial computational resource computing and catastrophic forgetting. The fundamental cause is that, with the primary goal of enhancing multilingual comprehension, an excessive number of irrelevant layers and parameters are tuned during the first stage. Given our findings that the representation learning of languages is merely conducted in lower-level layers, we propose an efficient multilingual reasoning alignment approach that precisely identifies and fine-tunes the layers responsible for handling multilingualism. Experimental results show that our method, SLAM, only tunes 6 layers' feed-forward sub-layers including 6.5-8% of all parameters within 7B and 13B LLMs, achieving superior average performance than all strong baselines across 10 languages. Meanwhile, SLAM only involves one training stage, reducing training time by 4.1-11.9 compared to the two-stage method.
Abstract:Large language models (LLMs) have demonstrated impressive instruction following capabilities, while still struggling to accurately manage the length of the generated text, which is a fundamental requirement in many real-world applications. Existing length control methods involve fine-tuning the parameters of LLMs, which is inefficient and suboptimal for practical use. In this paper, we propose a novel iterative sampling framework for text length control, integrating the Metropolis-Hastings algorithm with an importance sampling acceleration strategy. This framework efficiently and reliably regulates LLMs to generate length-constrained text without modifying the underlying parameters, thereby preserving the original capabilities of LLMs. Experimental results demonstrate that our framework achieves almost 100\% success rates of length control on Llama3.1 for tasks such as length-controlled abstractive summarization and length-constrained instruction following, with minimal additional computational overhead. This also highlights the significant potential of our method for precise length control across a broader range of applications, without compromising the versatility of LLMs.