Abstract:Numerous benchmarks have been built to evaluate the domain-specific abilities of large language models (LLMs), highlighting the need for effective and efficient benchmark construction. Existing domain-specific benchmarks primarily focus on the scaling law, relying on massive corpora for supervised fine-tuning or generating extensive question sets for broad coverage. However, the impact of corpus and question-answer (QA) set design on the precision and recall of domain-specific LLMs remains unexplored. In this paper, we address this gap and demonstrate that the scaling law is not always the optimal principle for benchmark construction in specific domains. Instead, we propose Comp-Comp, an iterative benchmarking framework based on a comprehensiveness-compactness principle. Here, comprehensiveness ensures semantic recall of the domain, while compactness enhances precision, guiding both corpus and QA set construction. To validate our framework, we conducted a case study in a well-renowned university, resulting in the creation of XUBench, a large-scale and comprehensive closed-domain benchmark. Although we use the academic domain as the case in this work, our Comp-Comp framework is designed to be extensible beyond academia, providing valuable insights for benchmark construction across various domains.
Abstract:Retrieval-augmented generation has achieved strong performance on knowledge-intensive tasks where query-document relevance can be identified through direct lexical or semantic matches. However, many real-world queries involve abstract reasoning, analogical thinking, or multi-step inference, which existing retrievers often struggle to capture. To address this challenge, we present \textbf{DIVER}, a retrieval pipeline tailored for reasoning-intensive information retrieval. DIVER consists of four components: document processing to improve input quality, LLM-driven query expansion via iterative document interaction, a reasoning-enhanced retriever fine-tuned on synthetic multi-domain data with hard negatives, and a pointwise reranker that combines LLM-assigned helpfulness scores with retrieval scores. On the BRIGHT benchmark, DIVER achieves state-of-the-art nDCG@10 scores of 41.6 and 28.9 on original queries, consistently outperforming competitive reasoning-aware models. These results demonstrate the effectiveness of reasoning-aware retrieval strategies in complex real-world tasks. Our code and retrieval model will be released soon.
Abstract:Alignment methodologies have emerged as a critical pathway for enhancing language model alignment capabilities. While SFT (supervised fine-tuning) accelerates convergence through direct token-level loss intervention, its efficacy is constrained by offline policy trajectory. In contrast, RL(reinforcement learning) facilitates exploratory policy optimization, but suffers from low sample efficiency and stringent dependency on high-quality base models. To address these dual challenges, we propose GRAO (Group Relative Alignment Optimization), a unified framework that synergizes the respective strengths of SFT and RL through three key innovations: 1) A multi-sample generation strategy enabling comparative quality assessment via reward feedback; 2) A novel Group Direct Alignment Loss formulation leveraging intra-group relative advantage weighting; 3) Reference-aware parameter updates guided by pairwise preference dynamics. Our theoretical analysis establishes GRAO's convergence guarantees and sample efficiency advantages over conventional approaches. Comprehensive evaluations across complex human alignment tasks demonstrate GRAO's superior performance, achieving 57.70\%,17.65\% 7.95\% and 5.18\% relative improvements over SFT, DPO, PPO and GRPO baselines respectively. This work provides both a theoretically grounded alignment framework and empirical evidence for efficient capability evolution in language models.
Abstract:Diffusion-based models are redefining the state-of-the-art in end-to-end autonomous driving, yet their performance is increasingly hampered by a reliance on transformer-based fusion. These architectures face fundamental limitations: quadratic computational complexity restricts the use of high-resolution features, and a lack of spatial priors prevents them from effectively modeling the inherent structure of Bird's Eye View (BEV) representations. This paper introduces GMF-Drive (Gated Mamba Fusion for Driving), an end-to-end framework that overcomes these challenges through two principled innovations. First, we supersede the information-limited histogram-based LiDAR representation with a geometrically-augmented pillar format encoding shape descriptors and statistical features, preserving critical 3D geometric details. Second, we propose a novel hierarchical gated mamba fusion (GM-Fusion) architecture that substitutes an expensive transformer with a highly efficient, spatially-aware state-space model (SSM). Our core BEV-SSM leverages directional sequencing and adaptive fusion mechanisms to capture long-range dependencies with linear complexity, while explicitly respecting the unique spatial properties of the driving scene. Extensive experiments on the challenging NAVSIM benchmark demonstrate that GMF-Drive achieves a new state-of-the-art performance, significantly outperforming DiffusionDrive. Comprehensive ablation studies validate the efficacy of each component, demonstrating that task-specific SSMs can surpass a general-purpose transformer in both performance and efficiency for autonomous driving.
Abstract:We present 4KAgent, a unified agentic super-resolution generalist system designed to universally upscale any image to 4K resolution (and even higher, if applied iteratively). Our system can transform images from extremely low resolutions with severe degradations, for example, highly distorted inputs at 256x256, into crystal-clear, photorealistic 4K outputs. 4KAgent comprises three core components: (1) Profiling, a module that customizes the 4KAgent pipeline based on bespoke use cases; (2) A Perception Agent, which leverages vision-language models alongside image quality assessment experts to analyze the input image and make a tailored restoration plan; and (3) A Restoration Agent, which executes the plan, following a recursive execution-reflection paradigm, guided by a quality-driven mixture-of-expert policy to select the optimal output for each step. Additionally, 4KAgent embeds a specialized face restoration pipeline, significantly enhancing facial details in portrait and selfie photos. We rigorously evaluate our 4KAgent across 11 distinct task categories encompassing a total of 26 diverse benchmarks, setting new state-of-the-art on a broad spectrum of imaging domains. Our evaluations cover natural images, portrait photos, AI-generated content, satellite imagery, fluorescence microscopy, and medical imaging like fundoscopy, ultrasound, and X-ray, demonstrating superior performance in terms of both perceptual (e.g., NIQE, MUSIQ) and fidelity (e.g., PSNR) metrics. By establishing a novel agentic paradigm for low-level vision tasks, we aim to catalyze broader interest and innovation within vision-centric autonomous agents across diverse research communities. We will release all the code, models, and results at: https://4kagent.github.io.
Abstract:There are many types of standards in the field of communication. The traditional consulting model has a long cycle and relies on the knowledge and experience of experts, making it difficult to meet the rapidly developing technological demands. This paper combines the fine-tuning of large language models with the construction of knowledge graphs to implement an intelligent consultation and question-answering system for communication standards. The experimental results show that after LoRA tuning on the constructed dataset of 6,587 questions and answers in the field of communication standards, Qwen2.5-7B-Instruct demonstrates outstanding professional capabilities in the field of communication standards on the test set. BLEU-4 rose from 18.8564 to 66.8993, and evaluation indicators such as ROUGE also increased significantly, outperforming the fine-tuning effect of the comparison model Llama-3-8B-Instruct. Based on the ontology framework containing 6 entity attributes and 10 relation attributes, a knowledge graph of the communication standard domain containing 13,906 entities and 13,524 relations was constructed, showing a relatively good query accuracy rate. The intelligent consultation and question-answering system enables the fine-tuned model on the server side to access the locally constructed knowledge graph and conduct graphical retrieval of key information first, which is conducive to improving the question-answering effect. The evaluation using DeepSeek as the Judge on the test set shows that our RAG framework enables the fine-tuned model to improve the scores at all five angles, with an average score increase of 2.26%. And combined with web services and API interfaces, it has achieved very good results in terms of interaction experience and back-end access, and has very good practical application value.
Abstract:Foundation Models (FMs) are large-scale, pre-trained AI systems that have revolutionized natural language processing and computer vision, and are now advancing geospatial analysis and Earth Observation (EO). They promise improved generalization across tasks, scalability, and efficient adaptation with minimal labeled data. However, despite the rapid proliferation of geospatial FMs, their real-world utility and alignment with global sustainability goals remain underexplored. We introduce SustainFM, a comprehensive benchmarking framework grounded in the 17 Sustainable Development Goals with extremely diverse tasks ranging from asset wealth prediction to environmental hazard detection. This study provides a rigorous, interdisciplinary assessment of geospatial FMs and offers critical insights into their role in attaining sustainability goals. Our findings show: (1) While not universally superior, FMs often outperform traditional approaches across diverse tasks and datasets. (2) Evaluating FMs should go beyond accuracy to include transferability, generalization, and energy efficiency as key criteria for their responsible use. (3) FMs enable scalable, SDG-grounded solutions, offering broad utility for tackling complex sustainability challenges. Critically, we advocate for a paradigm shift from model-centric development to impact-driven deployment, and emphasize metrics such as energy efficiency, robustness to domain shifts, and ethical considerations.
Abstract:We propose GAM-Agent, a game-theoretic multi-agent framework for enhancing vision-language reasoning. Unlike prior single-agent or monolithic models, GAM-Agent formulates the reasoning process as a non-zero-sum game between base agents--each specializing in visual perception subtasks--and a critical agent that verifies logic consistency and factual correctness. Agents communicate via structured claims, evidence, and uncertainty estimates. The framework introduces an uncertainty-aware controller to dynamically adjust agent collaboration, triggering multi-round debates when disagreement or ambiguity is detected. This process yields more robust and interpretable predictions. Experiments on four challenging benchmarks--MMMU, MMBench, MVBench, and V*Bench--demonstrate that GAM-Agent significantly improves performance across various VLM backbones. Notably, GAM-Agent boosts the accuracy of small-to-mid scale models (e.g., Qwen2.5-VL-7B, InternVL3-14B) by 5--6\%, and still enhances strong models like GPT-4o by up to 2--3\%. Our approach is modular, scalable, and generalizable, offering a path toward reliable and explainable multi-agent multimodal reasoning.
Abstract:The Vision Language Model (VLM) excels in aligning vision and language representations, and prompt learning has emerged as a key technique for adapting such models to downstream tasks. However, the application of prompt learning with VLM in federated learning (\fl{}) scenarios remains underexplored. This paper systematically investigates the behavioral differences between language prompt learning (LPT) and vision prompt learning (VPT) under data heterogeneity challenges, including label skew and domain shift. We conduct extensive experiments to evaluate the impact of various \fl{} and prompt configurations, such as client scale, aggregation strategies, and prompt length, to assess the robustness of Federated Prompt Learning (FPL). Furthermore, we explore strategies for enhancing prompt learning in complex scenarios where label skew and domain shift coexist, including leveraging both prompt types when computational resources allow. Our findings offer practical insights into optimizing prompt learning in federated settings, contributing to the broader deployment of VLMs in privacy-preserving environments.
Abstract:Reinforcement learning (RL) holds significant promise for training LLM agents to handle complex, goal-oriented tasks that require multi-step interactions with external environments. However, a critical challenge when applying RL to these agentic tasks arises from delayed rewards: feedback signals are typically available only after the entire task is completed. This makes it non-trivial to assign delayed rewards to earlier actions, providing insufficient guidance regarding environmental constraints and hindering agent training. In this work, we draw on the insight that the ultimate completion of a task emerges from the cumulative progress an agent makes across individual steps. We propose Stepwise Progress Attribution (SPA), a general reward redistribution framework that decomposes the final reward into stepwise contributions, each reflecting its incremental progress toward overall task completion. To achieve this, we train a progress estimator that accumulates stepwise contributions over a trajectory to match the task completion. During policy optimization, we combine the estimated per-step contribution with a grounding signal for actions executed in the environment as the fine-grained, intermediate reward for effective agent training. Extensive experiments on common agent benchmarks (including Webshop, ALFWorld, and VirtualHome) demonstrate that SPA consistently outperforms the state-of-the-art method in both success rate (+2.5\% on average) and grounding accuracy (+1.9\% on average). Further analyses demonstrate that our method remarkably provides more effective intermediate rewards for RL training. Our code is available at https://github.com/WangHanLinHenry/SPA-RL-Agent.