Abstract:There are many types of standards in the field of communication. The traditional consulting model has a long cycle and relies on the knowledge and experience of experts, making it difficult to meet the rapidly developing technological demands. This paper combines the fine-tuning of large language models with the construction of knowledge graphs to implement an intelligent consultation and question-answering system for communication standards. The experimental results show that after LoRA tuning on the constructed dataset of 6,587 questions and answers in the field of communication standards, Qwen2.5-7B-Instruct demonstrates outstanding professional capabilities in the field of communication standards on the test set. BLEU-4 rose from 18.8564 to 66.8993, and evaluation indicators such as ROUGE also increased significantly, outperforming the fine-tuning effect of the comparison model Llama-3-8B-Instruct. Based on the ontology framework containing 6 entity attributes and 10 relation attributes, a knowledge graph of the communication standard domain containing 13,906 entities and 13,524 relations was constructed, showing a relatively good query accuracy rate. The intelligent consultation and question-answering system enables the fine-tuned model on the server side to access the locally constructed knowledge graph and conduct graphical retrieval of key information first, which is conducive to improving the question-answering effect. The evaluation using DeepSeek as the Judge on the test set shows that our RAG framework enables the fine-tuned model to improve the scores at all five angles, with an average score increase of 2.26%. And combined with web services and API interfaces, it has achieved very good results in terms of interaction experience and back-end access, and has very good practical application value.
Abstract:Foundation Models (FMs) are large-scale, pre-trained AI systems that have revolutionized natural language processing and computer vision, and are now advancing geospatial analysis and Earth Observation (EO). They promise improved generalization across tasks, scalability, and efficient adaptation with minimal labeled data. However, despite the rapid proliferation of geospatial FMs, their real-world utility and alignment with global sustainability goals remain underexplored. We introduce SustainFM, a comprehensive benchmarking framework grounded in the 17 Sustainable Development Goals with extremely diverse tasks ranging from asset wealth prediction to environmental hazard detection. This study provides a rigorous, interdisciplinary assessment of geospatial FMs and offers critical insights into their role in attaining sustainability goals. Our findings show: (1) While not universally superior, FMs often outperform traditional approaches across diverse tasks and datasets. (2) Evaluating FMs should go beyond accuracy to include transferability, generalization, and energy efficiency as key criteria for their responsible use. (3) FMs enable scalable, SDG-grounded solutions, offering broad utility for tackling complex sustainability challenges. Critically, we advocate for a paradigm shift from model-centric development to impact-driven deployment, and emphasize metrics such as energy efficiency, robustness to domain shifts, and ethical considerations.
Abstract:We propose GAM-Agent, a game-theoretic multi-agent framework for enhancing vision-language reasoning. Unlike prior single-agent or monolithic models, GAM-Agent formulates the reasoning process as a non-zero-sum game between base agents--each specializing in visual perception subtasks--and a critical agent that verifies logic consistency and factual correctness. Agents communicate via structured claims, evidence, and uncertainty estimates. The framework introduces an uncertainty-aware controller to dynamically adjust agent collaboration, triggering multi-round debates when disagreement or ambiguity is detected. This process yields more robust and interpretable predictions. Experiments on four challenging benchmarks--MMMU, MMBench, MVBench, and V*Bench--demonstrate that GAM-Agent significantly improves performance across various VLM backbones. Notably, GAM-Agent boosts the accuracy of small-to-mid scale models (e.g., Qwen2.5-VL-7B, InternVL3-14B) by 5--6\%, and still enhances strong models like GPT-4o by up to 2--3\%. Our approach is modular, scalable, and generalizable, offering a path toward reliable and explainable multi-agent multimodal reasoning.
Abstract:The Vision Language Model (VLM) excels in aligning vision and language representations, and prompt learning has emerged as a key technique for adapting such models to downstream tasks. However, the application of prompt learning with VLM in federated learning (\fl{}) scenarios remains underexplored. This paper systematically investigates the behavioral differences between language prompt learning (LPT) and vision prompt learning (VPT) under data heterogeneity challenges, including label skew and domain shift. We conduct extensive experiments to evaluate the impact of various \fl{} and prompt configurations, such as client scale, aggregation strategies, and prompt length, to assess the robustness of Federated Prompt Learning (FPL). Furthermore, we explore strategies for enhancing prompt learning in complex scenarios where label skew and domain shift coexist, including leveraging both prompt types when computational resources allow. Our findings offer practical insights into optimizing prompt learning in federated settings, contributing to the broader deployment of VLMs in privacy-preserving environments.
Abstract:Reinforcement learning (RL) holds significant promise for training LLM agents to handle complex, goal-oriented tasks that require multi-step interactions with external environments. However, a critical challenge when applying RL to these agentic tasks arises from delayed rewards: feedback signals are typically available only after the entire task is completed. This makes it non-trivial to assign delayed rewards to earlier actions, providing insufficient guidance regarding environmental constraints and hindering agent training. In this work, we draw on the insight that the ultimate completion of a task emerges from the cumulative progress an agent makes across individual steps. We propose Stepwise Progress Attribution (SPA), a general reward redistribution framework that decomposes the final reward into stepwise contributions, each reflecting its incremental progress toward overall task completion. To achieve this, we train a progress estimator that accumulates stepwise contributions over a trajectory to match the task completion. During policy optimization, we combine the estimated per-step contribution with a grounding signal for actions executed in the environment as the fine-grained, intermediate reward for effective agent training. Extensive experiments on common agent benchmarks (including Webshop, ALFWorld, and VirtualHome) demonstrate that SPA consistently outperforms the state-of-the-art method in both success rate (+2.5\% on average) and grounding accuracy (+1.9\% on average). Further analyses demonstrate that our method remarkably provides more effective intermediate rewards for RL training. Our code is available at https://github.com/WangHanLinHenry/SPA-RL-Agent.
Abstract:Large reasoning models (LRMs) have exhibited the capacity of enhancing reasoning performance via internal test-time scaling. Building upon this, a promising direction is to further scale test-time compute to unlock even greater reasoning capabilities. However, as we push these scaling boundaries, systematically understanding the practical limits and achieving optimal resource allocation becomes a critical challenge. In this paper, we investigate the scaling Pareto of test-time scaling and introduce the Test-Time Scaling Performance Model (TTSPM). We theoretically analyze two fundamental paradigms for such extended scaling, parallel scaling and sequential scaling, from a probabilistic modeling perspective. Our primary contribution is the derivation of the saturation point on the scaling budget for both strategies, identifying thresholds beyond which additional computation yields diminishing returns. Remarkably, despite their distinct mechanisms, both paradigms converge to a unified mathematical structure in their upper bounds. We empirically validate our theoretical findings on challenging reasoning benchmarks, including AIME, MATH-500, and GPQA, demonstrating the practical utility of these bounds for test-time resource allocation. We hope that this work provides insights into the cost-benefit trade-offs of test-time scaling, guiding the development of more resource-efficient inference strategies for large reasoning models.
Abstract:Large Language Models (LLMs) have achieved impressive performance on complex reasoning tasks with Chain-of-Thought (CoT) prompting. However, conventional CoT relies on reasoning steps explicitly verbalized in natural language, introducing inefficiencies and limiting its applicability to abstract reasoning. To address this, there has been growing research interest in latent CoT reasoning, where inference occurs within latent spaces. By decoupling reasoning from language, latent reasoning promises richer cognitive representations and more flexible, faster inference. Researchers have explored various directions in this promising field, including training methodologies, structural innovations, and internal reasoning mechanisms. This paper presents a comprehensive overview and analysis of this reasoning paradigm. We begin by proposing a unified taxonomy from four perspectives: token-wise strategies, internal mechanisms, analysis, and applications. We then provide in-depth discussions and comparative analyses of representative methods, highlighting their design patterns, strengths, and open challenges. We aim to provide a structured foundation for advancing this emerging direction in LLM reasoning. The relevant papers will be regularly updated at https://github.com/EIT-NLP/Awesome-Latent-CoT.
Abstract:The ThinPrep Cytologic Test (TCT) is the most widely used method for cervical cancer screening, and the sample quality directly impacts the accuracy of the diagnosis. Traditional manual evaluation methods rely on the observation of pathologist under microscopes. These methods exhibit high subjectivity, high cost, long duration, and low reliability. With the development of computer-aided diagnosis (CAD), an automated quality assessment system that performs at the level of a professional pathologist is necessary. To address this need, we propose a fully automated quality assessment method for Cervical Cytopathology Whole Slide Images (WSIs) based on The Bethesda System (TBS) diagnostic standards, artificial intelligence algorithms, and the characteristics of clinical data. The method analysis the context of WSIs to quantify quality evaluation metrics which are focused by TBS such as staining quality, cell counts and cell mass proportion through multiple models including object detection, classification and segmentation. Subsequently, the XGBoost model is used to mine the attention paid by pathologists to different quality evaluation metrics when evaluating samples, thereby obtaining a comprehensive WSI sample score calculation model. Experimental results on 100 WSIs demonstrate that the proposed evaluation method has significant advantages in terms of speed and consistency.
Abstract:Recent advances in AI and ML have transformed data science, yet increasing complexity and expertise requirements continue to hinder progress. While crowdsourcing platforms alleviate some challenges, high-level data science tasks remain labor-intensive and iterative. To overcome these limitations, we introduce R&D-Agent, a dual-agent framework for iterative exploration. The Researcher agent uses performance feedback to generate ideas, while the Developer agent refines code based on error feedback. By enabling multiple parallel exploration traces that merge and enhance one another, R&D-Agent narrows the gap between automated solutions and expert-level performance. Evaluated on MLE-Bench, R&D-Agent emerges as the top-performing machine learning engineering agent, demonstrating its potential to accelerate innovation and improve precision across diverse data science applications. We have open-sourced R&D-Agent on GitHub: https://github.com/microsoft/RD-Agent.
Abstract:The rapid evolution of generative AI has increased the threat of realistic audio-visual deepfakes, demanding robust detection methods. Existing solutions primarily address unimodal (audio or visual) forgeries but struggle with multimodal manipulations due to inadequate handling of heterogeneous modality features and poor generalization across datasets. To this end, we propose a novel framework called FauForensics by introducing biologically invariant facial action units (FAUs), which is a quantitative descriptor of facial muscle activity linked to emotion physiology. It serves as forgery-resistant representations that reduce domain dependency while capturing subtle dynamics often disrupted in synthetic content. Besides, instead of comparing entire video clips as in prior works, our method computes fine-grained frame-wise audiovisual similarities via a dedicated fusion module augmented with learnable cross-modal queries. It dynamically aligns temporal-spatial lip-audio relationships while mitigating multi-modal feature heterogeneity issues. Experiments on FakeAVCeleb and LAV-DF show state-of-the-art (SOTA) performance and superior cross-dataset generalizability with up to an average of 4.83\% than existing methods.