Alert button
Picture for Sheng Wang

Sheng Wang

Alert button

GBD-TS: Goal-based Pedestrian Trajectory Prediction with Diffusion using Tree Sampling Algorithm

Nov 25, 2023
Ge Sun, Sheng Wang, Yang Xiao, Lei Zhu, Ming Liu

Predicting pedestrian trajectories is crucial for improving the safety and effectiveness of autonomous driving and mobile robots. However, this task is nontrivial due to the inherent stochasticity of human motion, which naturally requires the predictor to generate multi-model prediction. Previous works have used various generative methods, such as GAN and VAE, for pedestrian trajectory prediction. Nevertheless, these methods may suffer from problems, including mode collapse and relatively low-quality results. The denoising diffusion probabilistic model (DDPM) has recently been applied to trajectory prediction due to its simple training process and powerful reconstruction ability. However, current diffusion-based methods are straightforward without fully leveraging input information and usually require many denoising iterations leading to a long inference time or an additional network for initialization. To address these challenges and promote the application of diffusion models in trajectory prediction, we propose a novel scene-aware multi-modal pedestrian trajectory prediction framework called GBD. GBD combines goal prediction with the diffusion network. First, the goal predictor produces multiple goals, and then the diffusion network generates multi-modal trajectories conditioned on these goals. Furthermore, we introduce a new diffusion sampling algorithm named tree sampling (TS), which leverages common feature to reduce the inference time and improve accuracy for multi-modal prediction. Experimental results demonstrate that our GBD-TS method achieves state-of-the-art performance with real-time inference speed.

* Submitted to ICRA 2024 
Viaarxiv icon

Dependency Relationships-Enhanced Attentive Group Recommendation in HINs

Nov 19, 2023
Juntao Zhang, Sheng Wang, Zhiyu Chen, Xiandi Yang, Zhiyong Peng

Recommending suitable items to a group of users, commonly referred to as the group recommendation task, is becoming increasingly urgent with the development of group activities. The challenges within the group recommendation task involve aggregating the individual preferences of group members as the group's preferences and facing serious sparsity problems due to the lack of user/group-item interactions. To solve these problems, we propose a novel approach called Dependency Relationships-Enhanced Attentive Group Recommendation (DREAGR) for the recommendation task of occasional groups. Specifically, we introduce the dependency relationship between items as side information to enhance the user/group-item interaction and alleviate the interaction sparsity problem. Then, we propose a Path-Aware Attention Embedding (PAAE) method to model users' preferences on different types of paths. Next, we design a gated fusion mechanism to fuse users' preferences into their comprehensive preferences. Finally, we develop an attention aggregator that aggregates users' preferences as the group's preferences for the group recommendation task. We conducted experiments on two datasets to demonstrate the superiority of DREAGR by comparing it with state-of-the-art group recommender models. The experimental results show that DREAGR outperforms other models, especially HR@N and NDCG@N (N=5, 10), where DREAGR has improved in the range of 3.64% to 7.01% and 2.57% to 3.39% on both datasets, respectively.

* 14 pages, 9 figures, This paper has been submitted to IEEE Transactions on Knowledge and Data Engineering 
Viaarxiv icon

MeLo: Low-rank Adaptation is Better than Fine-tuning for Medical Image Diagnosis

Nov 14, 2023
Yitao Zhu, Zhenrong Shen, Zihao Zhao, Sheng Wang, Xin Wang, Xiangyu Zhao, Dinggang Shen, Qian Wang

The common practice in developing computer-aided diagnosis (CAD) models based on transformer architectures usually involves fine-tuning from ImageNet pre-trained weights. However, with recent advances in large-scale pre-training and the practice of scaling laws, Vision Transformers (ViT) have become much larger and less accessible to medical imaging communities. Additionally, in real-world scenarios, the deployments of multiple CAD models can be troublesome due to problems such as limited storage space and time-consuming model switching. To address these challenges, we propose a new method MeLo (Medical image Low-rank adaptation), which enables the development of a single CAD model for multiple clinical tasks in a lightweight manner. It adopts low-rank adaptation instead of resource-demanding fine-tuning. By fixing the weight of ViT models and only adding small low-rank plug-ins, we achieve competitive results on various diagnosis tasks across different imaging modalities using only a few trainable parameters. Specifically, our proposed method achieves comparable performance to fully fine-tuned ViT models on four distinct medical imaging datasets using about 0.17% trainable parameters. Moreover, MeLo adds only about 0.5MB of storage space and allows for extremely fast model switching in deployment and inference. Our source code and pre-trained weights are available on our website (

* 5 pages, 3 figures 
Viaarxiv icon

Uni-COAL: A Unified Framework for Cross-Modality Synthesis and Super-Resolution of MR Images

Nov 14, 2023
Zhiyun Song, Zengxin Qi, Xin Wang, Xiangyu Zhao, Zhenrong Shen, Sheng Wang, Manman Fei, Zhe Wang, Di Zang, Dongdong Chen, Linlin Yao, Qian Wang, Xuehai Wu, Lichi Zhang

Cross-modality synthesis (CMS), super-resolution (SR), and their combination (CMSR) have been extensively studied for magnetic resonance imaging (MRI). Their primary goals are to enhance the imaging quality by synthesizing the desired modality and reducing the slice thickness. Despite the promising synthetic results, these techniques are often tailored to specific tasks, thereby limiting their adaptability to complex clinical scenarios. Therefore, it is crucial to build a unified network that can handle various image synthesis tasks with arbitrary requirements of modality and resolution settings, so that the resources for training and deploying the models can be greatly reduced. However, none of the previous works is capable of performing CMS, SR, and CMSR using a unified network. Moreover, these MRI reconstruction methods often treat alias frequencies improperly, resulting in suboptimal detail restoration. In this paper, we propose a Unified Co-Modulated Alias-free framework (Uni-COAL) to accomplish the aforementioned tasks with a single network. The co-modulation design of the image-conditioned and stochastic attribute representations ensures the consistency between CMS and SR, while simultaneously accommodating arbitrary combinations of input/output modalities and thickness. The generator of Uni-COAL is also designed to be alias-free based on the Shannon-Nyquist signal processing framework, ensuring effective suppression of alias frequencies. Additionally, we leverage the semantic prior of Segment Anything Model (SAM) to guide Uni-COAL, ensuring a more authentic preservation of anatomical structures during synthesis. Experiments on three datasets demonstrate that Uni-COAL outperforms the alternatives in CMS, SR, and CMSR tasks for MR images, which highlights its generalizability to wide-range applications.

Viaarxiv icon

Personalized Federated Learning via ADMM with Moreau Envelope

Nov 12, 2023
Shengkun Zhu, Jinshan Zeng, Sheng Wang, Yuan Sun, Zhiyong Peng

Personalized federated learning (PFL) is an approach proposed to address the issue of poor convergence on heterogeneous data. However, most existing PFL frameworks require strong assumptions for convergence. In this paper, we propose an alternating direction method of multipliers (ADMM) for training PFL models with Moreau envelope (FLAME), which achieves a sublinear convergence rate, relying on the relatively weak assumption of gradient Lipschitz continuity. Moreover, due to the gradient-free nature of ADMM, FLAME alleviates the need for hyperparameter tuning, particularly in avoiding the adjustment of the learning rate when training the global model. In addition, we propose a biased client selection strategy to expedite the convergence of training of PFL models. Our theoretical analysis establishes the global convergence under both unbiased and biased client selection strategies. Our experiments validate that FLAME, when trained on heterogeneous data, outperforms state-of-the-art methods in terms of model performance. Regarding communication efficiency, it exhibits an average speedup of 3.75x compared to the baselines. Furthermore, experimental results validate that the biased client selection strategy speeds up the convergence of both personalized and global models.

* 15 pages 
Viaarxiv icon

IR-STP: Enhancing Autonomous Driving with Interaction Reasoning in Spatio-Temporal Planning

Nov 06, 2023
Yingbing Chen, Jie Cheng, Lu Gan, Sheng Wang, Hongji Liu, Xiaodong Mei, Ming Liu

Considerable research efforts have been devoted to the development of motion planning algorithms, which form a cornerstone of the autonomous driving system (ADS). However, obtaining an interactive and secure trajectory for the ADS remains a formidable task, especially in scenarios with significant interaction complexities. Many contemporary prediction-based planning methods frequently overlook interaction modeling, leading to less effective planning performance. This paper introduces a novel prediction-based interactive planning framework that explicitly and mathematically models interactions among traffic entities during the planning process. Our method incorporates interaction reasoning into spatio-temporal (s-t) planning by defining interaction conditions and constraints. Furthermore, it records and continually updates interaction relations for each planned state throughout the forward search. We assess the performance of our approach alongside state-of-the-art methods using a series of experiments conducted in both single and multi-modal scenarios. These experiments encompass variations in the accuracy of prediction outcomes and different degrees of planner aggressiveness. The experimental findings demonstrate the effectiveness and robustness of our method, yielding insights applicable to the wider field of autonomous driving. For the community's reference, our code is accessible at

* 12 pages, 10 figures, submitted to IEEE-TITS 
Viaarxiv icon

ForeSeer: Product Aspect Forecasting Using Temporal Graph Embedding

Oct 07, 2023
Zixuan Liu, Gaurush Hiranandani, Kun Qian, Eddie W. Huang, Yi Xu, Belinda Zeng, Karthik Subbian, Sheng Wang

Figure 1 for ForeSeer: Product Aspect Forecasting Using Temporal Graph Embedding
Figure 2 for ForeSeer: Product Aspect Forecasting Using Temporal Graph Embedding
Figure 3 for ForeSeer: Product Aspect Forecasting Using Temporal Graph Embedding
Figure 4 for ForeSeer: Product Aspect Forecasting Using Temporal Graph Embedding

Developing text mining approaches to mine aspects from customer reviews has been well-studied due to its importance in understanding customer needs and product attributes. In contrast, it remains unclear how to predict the future emerging aspects of a new product that currently has little review information. This task, which we named product aspect forecasting, is critical for recommending new products, but also challenging because of the missing reviews. Here, we propose ForeSeer, a novel textual mining and product embedding approach progressively trained on temporal product graphs for this novel product aspect forecasting task. ForeSeer transfers reviews from similar products on a large product graph and exploits these reviews to predict aspects that might emerge in future reviews. A key novelty of our method is to jointly provide review, product, and aspect embeddings that are both time-sensitive and less affected by extremely imbalanced aspect frequencies. We evaluated ForeSeer on a real-world product review system containing 11,536,382 reviews and 11,000 products over 3 years. We observe that ForeSeer substantially outperformed existing approaches with at least 49.1\% AUPRC improvement under the real setting where aspect associations are not given. ForeSeer further improves future link prediction on the product graph and the review aspect association prediction. Collectively, Foreseer offers a novel framework for review forecasting by effectively integrating review text, product network, and temporal information, opening up new avenues for online shopping recommendation and e-commerce applications.

Viaarxiv icon

MMICL: Empowering Vision-language Model with Multi-Modal In-Context Learning

Oct 02, 2023
Haozhe Zhao, Zefan Cai, Shuzheng Si, Xiaojian Ma, Kaikai An, Liang Chen, Zixuan Liu, Sheng Wang, Wenjuan Han, Baobao Chang

Figure 1 for MMICL: Empowering Vision-language Model with Multi-Modal In-Context Learning
Figure 2 for MMICL: Empowering Vision-language Model with Multi-Modal In-Context Learning
Figure 3 for MMICL: Empowering Vision-language Model with Multi-Modal In-Context Learning
Figure 4 for MMICL: Empowering Vision-language Model with Multi-Modal In-Context Learning

Since the resurgence of deep learning, vision-language models (VLMs) enhanced by large language models (LLMs) have grown exponentially in popularity. However, while LLMs can utilize extensive background knowledge and task information with in-context learning, most VLMs still struggle with understanding complex multi-modal prompts with multiple images, making VLMs less effective in downstream vision-language tasks. In this paper, we address the limitation above by 1) introducing MMICL, a new approach to allow the VLM to deal with multi-modal inputs efficiently; 2) proposing a novel context scheme to augment the in-context learning ability of the VLM; 3) constructing the Multi-modal In-Context Learning (MIC) dataset, designed to enhance the VLM's ability to understand complex multi-modal prompts. Our experiments confirm that MMICL achieves new state-of-the-art zero-shot performance on a wide range of general vision-language tasks, especially for complex benchmarks, including MME and MMBench. Our analysis demonstrates that MMICL effectively tackles the challenge of complex multi-modal prompt understanding and emerges the impressive ICL ability. Furthermore, we observe that MMICL successfully alleviates language bias in VLMs, a common issue for VLMs that often leads to hallucination when faced with extensive textual context.

* Code, dataset, checkpoints, and demos are available at 
Viaarxiv icon

Improving Autonomous Driving Safety with POP: A Framework for Accurate Partially Observed Trajectory Predictions

Sep 27, 2023
Sheng Wang, Yingbing Chen, Jie Cheng, Xiaodong Mei, Yongkang Song, Ming Liu

Accurate trajectory prediction is crucial for safe and efficient autonomous driving, but handling partial observations presents significant challenges. To address this, we propose a novel trajectory prediction framework called Partial Observations Prediction (POP) for congested urban road scenarios. The framework consists of two stages: self-supervised learning (SSL) and feature distillation. In SSL, a reconstruction branch reconstructs the hidden history of partial observations using a mask procedure and reconstruction head. The feature distillation stage transfers knowledge from a fully observed teacher model to a partially observed student model, improving prediction accuracy. POP achieves comparable results to top-performing methods in open-loop experiments and outperforms the baseline method in closed-loop simulations, including safety metrics. Qualitative results illustrate the superiority of POP in providing reasonable and safe trajectory predictions.

Viaarxiv icon