Abstract:The explosive growth of videos on streaming media platforms has underscored the urgent need for effective video quality assessment (VQA) algorithms to monitor and perceptually optimize the quality of streaming videos. However, VQA remains an extremely challenging task due to the diverse video content and the complex spatial and temporal distortions, thus necessitating more advanced methods to address these issues. Nowadays, large multimodal models (LMMs), such as GPT-4V, have exhibited strong capabilities for various visual understanding tasks, motivating us to leverage the powerful multimodal representation ability of LMMs to solve the VQA task. Therefore, we propose the first Large Multi-Modal Video Quality Assessment (LMM-VQA) model, which introduces a novel spatiotemporal visual modeling strategy for quality-aware feature extraction. Specifically, we first reformulate the quality regression problem into a question and answering (Q&A) task and construct Q&A prompts for VQA instruction tuning. Then, we design a spatiotemporal vision encoder to extract spatial and temporal features to represent the quality characteristics of videos, which are subsequently mapped into the language space by the spatiotemporal projector for modality alignment. Finally, the aligned visual tokens and the quality-inquired text tokens are aggregated as inputs for the large language model (LLM) to generate the quality score and level. Extensive experiments demonstrate that LMM-VQA achieves state-of-the-art performance across five VQA benchmarks, exhibiting an average improvement of $5\%$ in generalization ability over existing methods. Furthermore, due to the advanced design of the spatiotemporal encoder and projector, LMM-VQA also performs exceptionally well on general video understanding tasks, further validating its effectiveness. Our code will be released at https://github.com/Sueqk/LMM-VQA.
Abstract:Traditional image steganography focuses on concealing one image within another, aiming to avoid steganalysis by unauthorized entities. Coverless image steganography (CIS) enhances imperceptibility by not using any cover image. Recent works have utilized text prompts as keys in CIS through diffusion models. However, this approach faces three challenges: invalidated when private prompt is guessed, crafting public prompts for semantic diversity, and the risk of prompt leakage during frequent transmission. To address these issues, we propose DiffStega, an innovative training-free diffusion-based CIS strategy for universal application. DiffStega uses a password-dependent reference image as an image prompt alongside the text, ensuring that only authorized parties can retrieve the hidden information. Furthermore, we develop Noise Flip technique to further secure the steganography against unauthorized decryption. To comprehensively assess our method across general CIS tasks, we create a dataset comprising various image steganography instances. Experiments indicate substantial improvements in our method over existing ones, particularly in aspects of versatility, password sensitivity, and recovery quality. Codes are available at \url{https://github.com/evtricks/DiffStega}.
Abstract:Vision-Language MOT is a crucial tracking problem and has drawn increasing attention recently. It aims to track objects based on human language commands, replacing the traditional use of templates or pre-set information from training sets in conventional tracking tasks. Despite various efforts, a key challenge lies in the lack of a clear understanding of why language is used for tracking, which hinders further development in this field. In this paper, we address this challenge by introducing Language-Guided MOT, a unified task framework, along with a corresponding large-scale benchmark, termed LaMOT, which encompasses diverse scenarios and language descriptions. Specially, LaMOT comprises 1,660 sequences from 4 different datasets and aims to unify various Vision-Language MOT tasks while providing a standardized evaluation platform. To ensure high-quality annotations, we manually assign appropriate descriptive texts to each target in every video and conduct careful inspection and correction. To the best of our knowledge, LaMOT is the first benchmark dedicated to Language-Guided MOT. Additionally, we propose a simple yet effective tracker, termed LaMOTer. By establishing a unified task framework, providing challenging benchmarks, and offering insights for future algorithm design and evaluation, we expect to contribute to the advancement of research in Vision-Language MOT. We will release the data at https://github.com/Nathan-Li123/LaMOT.
Abstract:When capturing images through the glass during rainy or snowy weather conditions, the resulting images often contain waterdrops adhered on the glass surface, and these waterdrops significantly degrade the image quality and performance of many computer vision algorithms. To tackle these limitations, we propose a method to reconstruct the clear 3D scene implicitly from multi-view images degraded by waterdrops. Our method exploits an attention network to predict the location of waterdrops and then train a Neural Radiance Fields to recover the 3D scene implicitly. By leveraging the strong scene representation capabilities of NeRF, our method can render high-quality novel-view images with waterdrops removed. Extensive experimental results on both synthetic and real datasets show that our method is able to generate clear 3D scenes and outperforms existing state-of-the-art (SOTA) image adhesive waterdrop removal methods.
Abstract:In this paper, we explore the potential of Snapshot Compressive Imaging (SCI) technique for recovering the underlying 3D scene representation from a single temporal compressed image. SCI is a cost-effective method that enables the recording of high-dimensional data, such as hyperspectral or temporal information, into a single image using low-cost 2D imaging sensors. To achieve this, a series of specially designed 2D masks are usually employed, which not only reduces storage requirements but also offers potential privacy protection. Inspired by this, to take one step further, our approach builds upon the powerful 3D scene representation capabilities of neural radiance fields (NeRF). Specifically, we formulate the physical imaging process of SCI as part of the training of NeRF, allowing us to exploit its impressive performance in capturing complex scene structures. To assess the effectiveness of our method, we conduct extensive evaluations using both synthetic data and real data captured by our SCI system. Extensive experimental results demonstrate that our proposed approach surpasses the state-of-the-art methods in terms of image reconstruction and novel view image synthesis. Moreover, our method also exhibits the ability to restore high frame-rate multi-view consistent images by leveraging SCI and the rendering capabilities of NeRF. The code is available at https://github.com/WU-CVGL/SCINeRF.
Abstract:Current multi-object tracking (MOT) aims to predict trajectories of targets (i.e.,"where") in videos. Yet, knowing merely "where" is insufficient in many crucial applications. In comparison, semantic understanding such as fine-grained behaviors, interactions, and overall summarized captions (i.e., "what") from videos, associated with "where", is highly-desired for comprehensive video analysis. Thus motivated, we introduce Semantic Multi-Object Tracking (SMOT), that aims to estimate object trajectories and meanwhile understand semantic details of associated trajectories including instance captions, instance interactions, and overall video captions, integrating "where" and "what" for tracking. In order to foster the exploration of SMOT, we propose BenSMOT, a large-scale Benchmark for Semantic MOT. Specifically, BenSMOT comprises 3,292 videos with 151K frames, covering various scenarios for semantic tracking of humans. BenSMOT provides annotations for the trajectories of targets, along with associated instance captions in natural language, instance interactions, and overall caption for each video sequence. To our best knowledge, BenSMOT is the first publicly available benchmark for SMOT. Besides, to encourage future research, we present a novel tracker named SMOTer, which is specially designed and end-to-end trained for SMOT, showing promising performance. By releasing BenSMOT, we expect to go beyond conventional MOT by predicting "where" and "what" for SMOT, opening up a new direction in tracking for video understanding. Our BenSMOT and SMOTer will be released.
Abstract:Singing, as a common facial movement second only to talking, can be regarded as a universal language across ethnicities and cultures, plays an important role in emotional communication, art, and entertainment. However, it is often overlooked in the field of audio-driven facial animation due to the lack of singing head datasets and the domain gap between singing and talking in rhythm and amplitude. To this end, we collect a high-quality large-scale singing head dataset, SingingHead, which consists of more than 27 hours of synchronized singing video, 3D facial motion, singing audio, and background music from 76 individuals and 8 types of music. Along with the SingingHead dataset, we argue that 3D and 2D facial animation tasks can be solved together, and propose a unified singing facial animation framework named UniSinger to achieve both singing audio-driven 3D singing head animation and 2D singing portrait video synthesis. Extensive comparative experiments with both SOTA 3D facial animation and 2D portrait animation methods demonstrate the necessity of singing-specific datasets in singing head animation tasks and the promising performance of our unified facial animation framework.
Abstract:Multi-object tracking (MOT) is a fundamental problem in computer vision with numerous applications, such as intelligent surveillance and automated driving. Despite the significant progress made in MOT, pedestrian attributes, such as gender, hairstyle, body shape, and clothing features, which contain rich and high-level information, have been less explored. To address this gap, we propose a simple, effective, and generic method to predict pedestrian attributes to support general Re-ID embedding. We first introduce AttMOT, a large, highly enriched synthetic dataset for pedestrian tracking, containing over 80k frames and 6 million pedestrian IDs with different time, weather conditions, and scenarios. To the best of our knowledge, AttMOT is the first MOT dataset with semantic attributes. Subsequently, we explore different approaches to fuse Re-ID embedding and pedestrian attributes, including attention mechanisms, which we hope will stimulate the development of attribute-assisted MOT. The proposed method AAM demonstrates its effectiveness and generality on several representative pedestrian multi-object tracking benchmarks, including MOT17 and MOT20, through experiments on the AttMOT dataset. When applied to state-of-the-art trackers, AAM achieves consistent improvements in MOTA, HOTA, AssA, IDs, and IDF1 scores. For instance, on MOT17, the proposed method yields a +1.1 MOTA, +1.7 HOTA, and +1.8 IDF1 improvement when used with FairMOT. To encourage further research on attribute-assisted MOT, we will release the AttMOT dataset.
Abstract:The pre-training-fine-tuning paradigm based on layout-aware multimodal pre-trained models has achieved significant progress on document image question answering. However, domain pre-training and task fine-tuning for additional visual, layout, and task modules prevent them from directly utilizing off-the-shelf instruction-tuning language foundation models, which have recently shown promising potential in zero-shot learning. Contrary to aligning language models to the domain of document image question answering, we align document image question answering to off-the-shell instruction-tuning language foundation models to utilize their zero-shot capability. Specifically, we propose layout and task aware instruction prompt called LATIN-Prompt, which consists of layout-aware document content and task-aware descriptions. The former recovers the layout information among text segments from OCR tools by appropriate spaces and line breaks. The latter ensures that the model generates answers that meet the requirements, especially format requirements, through a detailed description of task. Experimental results on three benchmarks show that LATIN-Prompt can improve the zero-shot performance of instruction-tuning language foundation models on document image question answering and help them achieve comparable levels to SOTAs based on the pre-training-fine-tuning paradigm. Quantitative analysis and qualitative analysis demonstrate the effectiveness of LATIN-Prompt. We provide the code in supplementary and will release the code to facilitate future research.
Abstract:To bring digital avatars into people's lives, it is highly demanded to efficiently generate complete, realistic, and animatable head avatars. This task is challenging, and it is difficult for existing methods to satisfy all the requirements at once. To achieve these goals, we propose GANHead (Generative Animatable Neural Head Avatar), a novel generative head model that takes advantages of both the fine-grained control over the explicit expression parameters and the realistic rendering results of implicit representations. Specifically, GANHead represents coarse geometry, fine-gained details and texture via three networks in canonical space to obtain the ability to generate complete and realistic head avatars. To achieve flexible animation, we define the deformation filed by standard linear blend skinning (LBS), with the learned continuous pose and expression bases and LBS weights. This allows the avatars to be directly animated by FLAME parameters and generalize well to unseen poses and expressions. Compared to state-of-the-art (SOTA) methods, GANHead achieves superior performance on head avatar generation and raw scan fitting.