Abstract:We introduce MedAgentGYM, the first publicly available training environment designed to enhance coding-based medical reasoning capabilities in large language model (LLM) agents. MedAgentGYM comprises 72,413 task instances across 129 categories derived from authentic real-world biomedical scenarios. Tasks are encapsulated within executable coding environments, each featuring detailed task descriptions, interactive feedback mechanisms, verifiable ground-truth annotations, and scalable training trajectory generation. Extensive benchmarking of over 30 LLMs reveals a notable performance disparity between commercial API-based models and open-source counterparts. Leveraging MedAgentGYM, Med-Copilot-7B achieves substantial performance gains through supervised fine-tuning (+36.44%) and continued reinforcement learning (+42.47%), emerging as an affordable and privacy-preserving alternative competitive with gpt-4o. By offering both a comprehensive benchmark and accessible, expandable training resources within unified execution environments, MedAgentGYM delivers an integrated platform to develop LLM-based coding assistants for advanced biomedical research and practice.
Abstract:The rapid advancement of large Vision-Language Models (VLMs) has propelled the development of pure-vision-based GUI Agents, capable of perceiving and operating Graphical User Interfaces (GUI) to autonomously fulfill user instructions. However, existing approaches usually adopt an offline learning framework, which faces two core limitations: (1) heavy reliance on high-quality manual annotations for element grounding and action supervision, and (2) limited adaptability to dynamic and interactive environments. To address these limitations, we propose ZeroGUI, a scalable, online learning framework for automating GUI Agent training at Zero human cost. Specifically, ZeroGUI integrates (i) VLM-based automatic task generation to produce diverse training goals from the current environment state, (ii) VLM-based automatic reward estimation to assess task success without hand-crafted evaluation functions, and (iii) two-stage online reinforcement learning to continuously interact with and learn from GUI environments. Experiments on two advanced GUI Agents (UI-TARS and Aguvis) demonstrate that ZeroGUI significantly boosts performance across OSWorld and AndroidLab environments. The code is available at https://github.com/OpenGVLab/ZeroGUI.
Abstract:Attention mechanisms have emerged as transformative tools in core AI domains such as natural language processing and computer vision. Yet, their largely untapped potential for modeling intricate physical systems presents a compelling frontier. Learning such systems often entails discovering operators that map between functional spaces using limited instances of function pairs -- a task commonly framed as a severely ill-posed inverse PDE problem. In this work, we introduce Neural Interpretable PDEs (NIPS), a novel neural operator architecture that builds upon and enhances Nonlocal Attention Operators (NAO) in both predictive accuracy and computational efficiency. NIPS employs a linear attention mechanism to enable scalable learning and integrates a learnable kernel network that acts as a channel-independent convolution in Fourier space. As a consequence, NIPS eliminates the need to explicitly compute and store large pairwise interactions, effectively amortizing the cost of handling spatial interactions into the Fourier transform. Empirical evaluations demonstrate that NIPS consistently surpasses NAO and other baselines across diverse benchmarks, heralding a substantial leap in scalable, interpretable, and efficient physics learning. Our code and data accompanying this paper are available at https://github.com/fishmoon1234/Nonlocal-Attention-Operator.
Abstract:Recent breakthroughs in large multimodal models (LMMs), such as the impressive GPT-4o-Native, have demonstrated remarkable proficiency in following general-purpose instructions for image generation. However, current benchmarks often lack the necessary breadth and depth to fully evaluate the diverse capabilities of these models. To overcome this limitation, we introduce OmniGenBench, a novel and comprehensive benchmark meticulously designed to assess the instruction-following abilities of state-of-the-art LMMs across both perception-centric and cognition-centric dimensions. Our OmniGenBench includes 57 diverse sub-tasks grounded in real-world scenarios, systematically categorized according to the specific model capabilities they demand. For rigorous evaluation, we further employ a dual-mode protocol. This protocol utilizes off-the-shelf visual parsing tools for perception-centric tasks and a powerful LLM-based judger for cognition-centric tasks to assess the alignment between generated images and user instructions. Using OmniGenBench, we evaluate mainstream generative models, including prevalent models like GPT-4o, Gemini-2.0-Flash, and Seedream, and provide in-depth comparisons and analyses of their performance.Code and data are available at https://github.com/emilia113/OmniGenBench.
Abstract:Large language models (LLMs) have shown remarkable generalization across tasks, leading to increased interest in integrating speech with LLMs. These speech LLMs (SLLMs) typically use supervised fine-tuning to align speech with text-based LLMs. However, the lack of annotated speech data across a wide range of tasks hinders alignment efficiency, resulting in poor generalization. To address these issues, we propose a novel multi-task 'behavior imitation' method with speech-text interleaving, called MTBI, which relies solely on paired speech and transcripts. By ensuring the LLM decoder generates equivalent responses to paired speech and text, we achieve a more generalized SLLM. Interleaving is used to further enhance alignment efficiency. We introduce a simple benchmark to evaluate prompt and task generalization across different models. Experimental results demonstrate that our MTBI outperforms SOTA SLLMs on both prompt and task generalization, while requiring less supervised speech data.
Abstract:In this work, we present a novel approach to process the DIC measurements of multiple biaxial stretching protocols. In particular, we develop a optimization-based approach, which calculates the smoothed nodal displacements using a moving least-squares algorithm subject to positive strain constraints. As such, physically consistent displacement and strain fields are obtained. Then, we further deploy a data-driven workflow to heterogeneous material modeling from these physically consistent DIC measurements, by estimating a nonlocal constitutive law together with the material microstructure. To demonstrate the applicability of our approach, we apply it in learning a material model and fiber orientation field from DIC measurements of a porcine tricuspid valve anterior leaflet. Our results demonstrate that the proposed DIC data processing approach can significantly improve the accuracy of modeling biological materials.
Abstract:Transformers have shown a remarkable ability for in-context learning (ICL), making predictions based on contextual examples. However, while theoretical analyses have explored this prediction capability, the nature of the inferred context and its utility for downstream predictions remain open questions. This paper aims to address these questions by examining ICL for inverse linear regression (ILR), where context inference can be characterized by unsupervised learning of underlying weight vectors. Focusing on the challenging scenario of rank-deficient inverse problems, where context length is smaller than the number of unknowns in the weight vectors and regularization is necessary, we introduce a linear transformer to learn the inverse mapping from contextual examples to the underlying weight vector. Our findings reveal that the transformer implicitly learns both a prior distribution and an effective regularization strategy, outperforming traditional ridge regression and regularization methods. A key insight is the necessity of low task dimensionality relative to the context length for successful learning. Furthermore, we numerically verify that the error of the transformer estimator scales linearly with the noise level, the ratio of task dimension to context length, and the condition number of the input data. These results not only demonstrate the potential of transformers for solving ill-posed inverse problems, but also provide a new perspective towards understanding the knowledge extraction mechanism within transformers.
Abstract:We present MiMo-7B, a large language model born for reasoning tasks, with optimization across both pre-training and post-training stages. During pre-training, we enhance the data preprocessing pipeline and employ a three-stage data mixing strategy to strengthen the base model's reasoning potential. MiMo-7B-Base is pre-trained on 25 trillion tokens, with additional Multi-Token Prediction objective for enhanced performance and accelerated inference speed. During post-training, we curate a dataset of 130K verifiable mathematics and programming problems for reinforcement learning, integrating a test-difficulty-driven code-reward scheme to alleviate sparse-reward issues and employing strategic data resampling to stabilize training. Extensive evaluations show that MiMo-7B-Base possesses exceptional reasoning potential, outperforming even much larger 32B models. The final RL-tuned model, MiMo-7B-RL, achieves superior performance on mathematics, code and general reasoning tasks, surpassing the performance of OpenAI o1-mini. The model checkpoints are available at https://github.com/xiaomimimo/MiMo.
Abstract:Data-driven methods have emerged as powerful tools for modeling the responses of complex nonlinear materials directly from experimental measurements. Among these methods, the data-driven constitutive models present advantages in physical interpretability and generalizability across different boundary conditions/domain settings. However, the well-posedness of these learned models is generally not guaranteed a priori, which makes the models prone to non-physical solutions in downstream simulation tasks. In this study, we introduce monotone peridynamic neural operator (MPNO), a novel data-driven nonlocal constitutive model learning approach based on neural operators. Our approach learns a nonlocal kernel together with a nonlinear constitutive relation, while ensuring solution uniqueness through a monotone gradient network. This architectural constraint on gradient induces convexity of the learnt energy density function, thereby guaranteeing solution uniqueness of MPNO in small deformation regimes. To validate our approach, we evaluate MPNO's performance on both synthetic and real-world datasets. On synthetic datasets with manufactured kernel and constitutive relation, we show that the learnt model converges to the ground-truth as the measurement grid size decreases both theoretically and numerically. Additionally, our MPNO exhibits superior generalization capabilities than the conventional neural networks: it yields smaller displacement solution errors in down-stream tasks with new and unseen loadings. Finally, we showcase the practical utility of our approach through applications in learning a homogenized model from molecular dynamics data, highlighting its expressivity and robustness in real-world scenarios.
Abstract:Retrieval-Augmented Generation (RAG) systems often struggle to handle multi-hop question-answering tasks accurately due to irrelevant context retrieval and limited complex reasoning capabilities. We introduce Collab-RAG, a collaborative training framework that leverages mutual enhancement between a white-box small language model (SLM) and a blackbox large language model (LLM) for RAG. Specifically, the SLM decomposes complex queries into simpler sub-questions, thus enhancing the accuracy of the retrieval and facilitating more effective reasoning by the black-box LLM. Concurrently, the black-box LLM provides feedback signals to improve the SLM's decomposition capability. We observe that Collab-RAG relies solely on supervision from an affordable black-box LLM without additional distillation from frontier LLMs, yet demonstrates strong generalization across multiple black-box LLMs. Experimental evaluations across five multi-hop QA datasets demonstrate that Collab-RAG substantially outperforms existing black-box-only and SLM fine-tuning baselines by 1.8%-14.2% on average. In particular, our fine-tuned 3B SLM surpasses a frozen 32B LLM in question decomposition, highlighting the efficiency of Collab-RAG in improving reasoning and retrieval for complex questions. The code of Collab-RAG is available on https://github.com/ritaranx/Collab-RAG/.