Abstract:Despite recent progress in training long-context reasoning models via reinforcement learning (RL), several open questions and counterintuitive behaviors remain. This work focuses on three key aspects: (1) We systematically analyze the roles of positive and negative samples in RL, revealing that positive samples mainly facilitate data fitting, whereas negative samples significantly enhance generalization and robustness. Interestingly, training solely on negative samples can rival standard RL training performance. (2) We identify substantial data inefficiency in group relative policy optimization, where over half of the samples yield zero advantage. To address this, we explore two straightforward strategies, including relative length rewards and offline sample injection, to better leverage these data and enhance reasoning efficiency and capability. (3) We investigate unstable performance across various reasoning models and benchmarks, attributing instability to uncertain problems with ambiguous outcomes, and demonstrate that multiple evaluation runs mitigate this issue.
Abstract:Continually expanding new languages for existing large language models (LLMs) is a promising yet challenging approach to building powerful multilingual LLMs. The biggest challenge is to make the model continuously learn new languages while preserving the proficient ability of old languages. To achieve this, recent work utilizes the Mixture-of-Experts (MoE) architecture to expand new languages by adding new experts and avoid catastrophic forgetting of old languages by routing corresponding tokens to the original model backbone (old experts). Although intuitive, this kind of method is parameter-costly when expanding new languages and still inevitably impacts the performance of old languages. To address these limitations, we analyze the language characteristics of different layers in LLMs and propose a layer-wise expert allocation algorithm (LayerMoE) to determine the appropriate number of new experts for each layer. Specifically, we find different layers in LLMs exhibit different representation similarities between languages and then utilize the similarity as the indicator to allocate experts for each layer, i.e., the higher similarity, the fewer experts. Additionally, to further mitigate the forgetting of old languages, we add a classifier in front of the router network on the layers with higher similarity to guide the routing of old language tokens. Experimental results show that our method outperforms the previous state-of-the-art baseline with 60% fewer experts in the single-expansion setting and with 33.3% fewer experts in the lifelong-expansion setting, demonstrating the effectiveness of our method.
Abstract:The challenge of slang translation lies in capturing context-dependent semantic extensions, as slang terms often convey meanings beyond their literal interpretation. While slang detection, explanation, and translation have been studied as isolated tasks in the era of large language models (LLMs), their intrinsic interdependence remains underexplored. The main reason is lacking of a benchmark where the two tasks can be a prerequisite for the third one, which can facilitate idiomatic translation. In this paper, we introduce the interpretative slang translation task (named SlangDIT) consisting of three sub-tasks: slang detection, cross-lingual slang explanation, and slang translation within the current context, aiming to generate more accurate translation with the help of slang detection and slang explanation. To this end, we construct a SlangDIT dataset, containing over 25k English-Chinese sentence pairs. Each source sentence mentions at least one slang term and is labeled with corresponding cross-lingual slang explanation. Based on the benchmark, we propose a deep thinking model, named SlangOWL. It firstly identifies whether the sentence contains a slang, and then judges whether the slang is polysemous and analyze its possible meaning. Further, the SlangOWL provides the best explanation of the slang term targeting on the current context. Finally, according to the whole thought, the SlangOWL offers a suitable translation. Our experiments on LLMs (\emph{e.g.}, Qwen2.5 and LLama-3.1), show that our deep thinking approach indeed enhances the performance of LLMs where the proposed SLangOWL significantly surpasses the vanilla models and supervised fine-tuned models without thinking.
Abstract:The sparse Mixture-of-Experts (MoE) has achieved significant progress for neural machine translation (NMT). However, there exist two limitations in current MoE solutions which may lead to sub-optimal performance: 1) they directly use the task knowledge of NMT into MoE (\emph{e.g.}, domain/linguistics-specific knowledge), which are generally unavailable at practical application and neglect the naturally grouped domain/linguistic properties; 2) the expert selection only depends on the localized token representation without considering the context, which fully grasps the state of each token in a global view. To address the above limitations, we propose THOR-MoE via arming the MoE with hierarchical task-guided and context-responsive routing policies. Specifically, it 1) firstly predicts the domain/language label and then extracts mixed domain/language representation to allocate task-level experts in a hierarchical manner; 2) injects the context information to enhance the token routing from the pre-selected task-level experts set, which can help each token to be accurately routed to more specialized and suitable experts. Extensive experiments on multi-domain translation and multilingual translation benchmarks with different architectures consistently demonstrate the superior performance of THOR-MoE. Additionally, the THOR-MoE operates as a plug-and-play module compatible with existing Top-$k$~\cite{shazeer2017} and Top-$p$~\cite{huang-etal-2024-harder} routing schemes, ensuring broad applicability across diverse MoE architectures. For instance, compared with vanilla Top-$p$~\cite{huang-etal-2024-harder} routing, the context-aware manner can achieve an average improvement of 0.75 BLEU with less than 22\% activated parameters on multi-domain translation tasks.
Abstract:In recent years, the emergence of large reasoning models (LRMs), such as OpenAI-o1 and DeepSeek-R1, has shown impressive capabilities in complex problems, e.g., mathematics and coding. Some pioneering studies attempt to bring the success of LRMs in neural machine translation (MT). They try to build LRMs with deep reasoning MT ability via reinforcement learning (RL). Despite some progress that has been made, these attempts generally focus on several high-resource languages, e.g., English and Chinese, leaving the performance on other languages unclear. Besides, the reward modeling methods in previous work do not fully unleash the potential of reinforcement learning in MT. In this work, we first design a new reward modeling method that compares the translation results of the policy MT model with a strong LRM (i.e., DeepSeek-R1-671B), and quantifies the comparisons to provide rewards. Experimental results demonstrate the superiority of the reward modeling method. Using Qwen2.5-7B-Instruct as the backbone, the trained model achieves the new state-of-the-art performance in literary translation, and outperforms strong LRMs including OpenAI-o1 and DeepSeeK-R1. Furthermore, we extend our method to the multilingual settings with 11 languages. With a carefully designed lightweight reward modeling in RL, we can simply transfer the strong MT ability from a single direction into multiple (i.e., 90) translation directions and achieve impressive multilingual MT performance.
Abstract:Many-to-many summarization (M2MS) aims to process documents in any language and generate the corresponding summaries also in any language. Recently, large language models (LLMs) have shown strong multi-lingual abilities, giving them the potential to perform M2MS in real applications. This work presents a systematic empirical study on LLMs' M2MS ability. Specifically, we first reorganize M2MS data based on eight previous domain-specific datasets. The reorganized data contains 47.8K samples spanning five domains and six languages, which could be used to train and evaluate LLMs. Then, we benchmark 18 LLMs in a zero-shot manner and an instruction-tuning manner. Fine-tuned traditional models (e.g., mBART) are also conducted for comparisons. Our experiments reveal that, zero-shot LLMs achieve competitive results with fine-tuned traditional models. After instruct-tuning, open-source LLMs can significantly improve their M2MS ability, and outperform zero-shot LLMs (including GPT-4) in terms of automatic evaluations. In addition, we demonstrate that this task-specific improvement does not sacrifice the LLMs' general task-solving abilities. However, as revealed by our human evaluation, LLMs still face the factuality issue, and the instruction tuning might intensify the issue. Thus, how to control factual errors becomes the key when building LLM summarizers in real applications, and is worth noting in future research.
Abstract:We introduce SLED, an alternative approach to speech language modeling by encoding speech waveforms into sequences of continuous latent representations and modeling them autoregressively using an energy distance objective. The energy distance offers an analytical measure of the distributional gap by contrasting simulated and target samples, enabling efficient training to capture the underlying continuous autoregressive distribution. By bypassing reliance on residual vector quantization, SLED avoids discretization errors and eliminates the need for the complicated hierarchical architectures common in existing speech language models. It simplifies the overall modeling pipeline while preserving the richness of speech information and maintaining inference efficiency. Empirical results demonstrate that SLED achieves strong performance in both zero-shot and streaming speech synthesis, showing its potential for broader applications in general-purpose speech language models.
Abstract:Conventional wisdom suggests that autoregressive models are used to process discrete data. When applied to continuous modalities such as visual data, Visual AutoRegressive modeling (VAR) typically resorts to quantization-based approaches to cast the data into a discrete space, which can introduce significant information loss. To tackle this issue, we introduce a Continuous VAR framework that enables direct visual autoregressive generation without vector quantization. The underlying theoretical foundation is strictly proper scoring rules, which provide powerful statistical tools capable of evaluating how well a generative model approximates the true distribution. Within this framework, all we need is to select a strictly proper score and set it as the training objective to optimize. We primarily explore a class of training objectives based on the energy score, which is likelihood-free and thus overcomes the difficulty of making probabilistic predictions in the continuous space. Previous efforts on continuous autoregressive generation, such as GIVT and diffusion loss, can also be derived from our framework using other strictly proper scores. Source code: https://github.com/shaochenze/EAR.
Abstract:Large Reasoning Models (LRMs) perform strongly in complex reasoning tasks via Chain-of-Thought (CoT) prompting, but often suffer from verbose outputs caused by redundant content, increasing computational overhead, and degrading user experience. Existing compression methods either operate post-hoc pruning, risking disruption to reasoning coherence, or rely on sampling-based selection, which fails to intervene effectively during generation. In this work, we introduce a confidence-guided perspective to explain the emergence of redundant reflection in LRMs, identifying two key patterns: Confidence Deficit, where the model reconsiders correct steps due to low internal confidence, and Termination Delay, where reasoning continues even after reaching a confident answer. Based on this analysis, we propose ConCISE (Confidence-guided Compression In Step-by-step Efficient Reasoning), a framework that simplifies reasoning chains by reinforcing the model's confidence during inference, thus preventing the generation of redundant reflection steps. It integrates Confidence Injection to stabilize intermediate steps and Early Stopping to terminate reasoning when confidence is sufficient. Extensive experiments demonstrate that fine-tuning LRMs on ConCISE-generated data yields significantly shorter outputs, reducing length by up to approximately 50% under SimPO, while maintaining high task accuracy. ConCISE consistently outperforms existing baselines across multiple reasoning benchmarks.
Abstract:Knowledge distillation (KD) is a promising solution to compress large language models (LLMs) by transferring their knowledge to smaller models. During this process, white-box KD methods usually minimize the distance between the output distributions of the teacher model and the student model to transfer more information. However, we reveal that the current white-box KD framework exhibits two limitations: a) bridging probability distributions from different output spaces will limit the similarity between the teacher model and the student model; b) this framework cannot be applied to LLMs with different vocabularies. One of the root causes for these limitations is that the distributions from the teacher and the student for KD are output by different prediction heads, which yield distributions in different output spaces and dimensions. Therefore, in this paper, we propose a dual-space knowledge distillation (DSKD) framework that unifies the prediction heads of the teacher and the student models for KD. Specifically, we first introduce two projectors with ideal initialization to project the teacher/student hidden states into the student/teacher representation spaces. After this, the hidden states from different models can share the same head and unify the output spaces of the distributions. Furthermore, we develop an exact token alignment (ETA) algorithm to align the same tokens in two differently-tokenized sequences. Based on the above, our DSKD framework is a general KD framework that supports both off-policy and on-policy KD, and KD between any two LLMs regardless of their vocabularies. Extensive experiments on instruction-following, mathematical reasoning, and code generation benchmarks show that DSKD significantly outperforms existing methods based on the current white-box KD framework and surpasses other cross-tokenizer KD methods for LLMs with different vocabularies.