Abstract:As cloud computing continues to evolve, the adoption of multi-NUMA (Non-Uniform Memory Access) architecture by cloud service providers has introduced new challenges in virtual machine (VM) scheduling. To address these challenges and more accurately reflect the complexities faced by modern cloud environments, we introduce the Dynamic VM Allocation problem in Multi-NUMA PM (DVAMP). We formally define both offline and online versions of DVAMP as mixed-integer linear programming problems, providing a rigorous mathematical foundation for analysis. A tight performance bound for greedy online algorithms is derived, offering insights into the worst-case optimality gap as a function of the number of physical machines and VM lifetime variability. To address the challenges posed by DVAMP, we propose SPANE (Symmetry-Preserving Architecture for Multi-NUMA Environments), a novel deep reinforcement learning approach that exploits the problem's inherent symmetries. SPANE produces invariant results under arbitrary permutations of physical machine states, enhancing learning efficiency and solution quality. Extensive experiments conducted on the Huawei-East-1 dataset demonstrate that SPANE outperforms existing baselines, reducing average VM wait time by 45%. Our work contributes to the field of cloud resource management by providing both theoretical insights and practical solutions for VM scheduling in multi-NUMA environments, addressing a critical gap in the literature and offering improved performance for real-world cloud systems.
Abstract:The conventional cloud-based large model learning framework is increasingly constrained by latency, cost, personalization, and privacy concerns. In this survey, we explore an emerging paradigm: collaborative learning between on-device small model and cloud-based large model, which promises low-latency, cost-efficient, and personalized intelligent services while preserving user privacy. We provide a comprehensive review across hardware, system, algorithm, and application layers. At each layer, we summarize key problems and recent advances from both academia and industry. In particular, we categorize collaboration algorithms into data-based, feature-based, and parameter-based frameworks. We also review publicly available datasets and evaluation metrics with user-level or device-level consideration tailored to collaborative learning settings. We further highlight real-world deployments, ranging from recommender systems and mobile livestreaming to personal intelligent assistants. We finally point out open research directions to guide future development in this rapidly evolving field.
Abstract:Small language models (SLMs) support efficient deployments on resource-constrained edge devices, but their limited capacity compromises inference performance. Retrieval-augmented generation (RAG) is a promising solution to enhance model performance by integrating external databases, without requiring intensive on-device model retraining. However, large-scale public databases and user-specific private contextual documents are typically located on the cloud and the device separately, while existing RAG implementations are primarily centralized. To bridge this gap, we propose DRAGON, a distributed RAG framework to enhance on-device SLMs through both general and personal knowledge without the risk of leaking document privacy. Specifically, DRAGON decomposes multi-document RAG into multiple parallel token generation processes performed independently and locally on the cloud and the device, and employs a newly designed Speculative Aggregation, a dual-side speculative algorithm to avoid frequent output synchronization between the cloud and device. A new scheduling algorithm is further introduced to identify the optimal aggregation side based on real-time network conditions. Evaluations on real-world hardware testbed demonstrate a significant performance improvement of DRAGON-up to 1.9x greater gains over standalone SLM compared to the centralized RAG, substantial reduction in per-token latency, and negligible Time to First Token (TTFT) overhead.
Abstract:The proliferation of GPS enabled devices has led to the accumulation of a substantial corpus of historical trajectory data. By leveraging these data for training machine learning models,researchers have devised novel data-driven methodologies that address the personalized route recommendation (PRR) problem. In contrast to conventional algorithms such as Dijkstra shortest path algorithm,these novel algorithms possess the capacity to discern and learn patterns within the data,thereby facilitating the generation of more personalized paths. However,once these models have been trained,their application is constrained to the generation of routes that align with their training patterns. This limitation renders them less adaptable to novel scenarios and the deployment of multiple machine learning models might be necessary to address new possible scenarios,which can be costly as each model must be trained separately. Inspired by recent advances in the field of Large Language Models (LLMs),we leveraged their natural language understanding capabilities to develop a unified model to solve the PRR problem while being seamlessly adaptable to new scenarios without additional training. To accomplish this,we combined the extensive knowledge LLMs acquired during training with further access to external hand-crafted context information,similar to RAG (Retrieved Augmented Generation) systems,to enhance their ability to generate paths according to user-defined requirements. Extensive experiments on different datasets show a considerable uplift in LLM performance on the PRR problem.
Abstract:Segment anything model (SAM) has shown impressive general-purpose segmentation performance on natural images, but its performance on camouflaged object detection (COD) is unsatisfactory. In this paper, we propose SAM-COD that performs camouflaged object detection for RGB-D inputs. While keeping the SAM architecture intact, dual stream adapters are expanded on the image encoder to learn potential complementary information from RGB images and depth images, and fine-tune the mask decoder and its depth replica to perform dual-stream mask prediction. In practice, the dual stream adapters are embedded into the attention block of the image encoder in a parallel manner to facilitate the refinement and correction of the two types of image embeddings. To mitigate channel discrepancies arising from dual stream embeddings that do not directly interact with each other, we augment the association of dual stream embeddings using bidirectional knowledge distillation including a model distiller and a modal distiller. In addition, to predict the masks for RGB and depth attention maps, we hybridize the two types of image embeddings which are jointly learned with the prompt embeddings to update the initial prompt, and then feed them into the mask decoders to synchronize the consistency of image embeddings and prompt embeddings. Experimental results on four COD benchmarks show that our SAM-COD achieves excellent detection performance gains over SAM and achieves state-of-the-art results with a given fine-tuning paradigm.
Abstract:The context caching technique is employed to accelerate the Multimodal Large Language Model (MLLM) inference by prevailing serving platforms currently. However, this approach merely reuses the Key-Value (KV) cache of the initial sequence of prompt, resulting in full KV cache recomputation even if the prefix differs slightly. This becomes particularly inefficient in the context of interleaved text and images, as well as multimodal retrieval-augmented generation. This paper proposes position-independent caching as a more effective approach for multimodal information management. We have designed and implemented a caching system, named MPIC, to address both system-level and algorithm-level challenges. MPIC stores the KV cache on local or remote disks when receiving multimodal data, and calculates and loads the KV cache in parallel during inference. To mitigate accuracy degradation, we have incorporated integrated reuse and recompute mechanisms within the system. The experimental results demonstrate that MPIC can achieve up to 54% reduction in response time compared to existing context caching systems, while maintaining negligible or no accuracy loss.
Abstract:In many practical natural language applications, user data are highly sensitive, requiring anonymous uploads of text data from mobile devices to the cloud without user identifiers. However, the absence of user identifiers restricts the ability of cloud-based language models to provide personalized services, which are essential for catering to diverse user needs. The trivial method of replacing an explicit user identifier with a static user embedding as model input still compromises data anonymization. In this work, we propose to let each mobile device maintain a user-specific distribution to dynamically generate user embeddings, thereby breaking the one-to-one mapping between an embedding and a specific user. We further theoretically demonstrate that to prevent the cloud from tracking users via uploaded embeddings, the local distributions of different users should either be derived from a linearly dependent space to avoid identifiability or be close to each other to prevent accurate attribution. Evaluation on both public and industrial datasets using different language models reveals a remarkable improvement in accuracy from incorporating anonymous user embeddings, while preserving real-time inference requirement.
Abstract:Existing work on large language model (LLM) personalization assigned different responding roles to LLM, but overlooked the diversity of questioners. In this work, we propose a new form of questioner-aware LLM personalization, generating different responses even for the same query from different questioners. We design a dual-tower model architecture with a cross-questioner general encoder and a questioner-specific encoder. We further apply contrastive learning with multi-view augmentation, pulling close the dialogue representations of the same questioner, while pulling apart those of different questioners. To mitigate the impact of question diversity on questioner-contrastive learning, we cluster the dialogues based on question similarity and restrict the scope of contrastive learning within each cluster. We also build a multi-questioner dataset from English and Chinese scripts and WeChat records, called MQDialog, containing 173 questioners and 12 responders. Extensive evaluation with different metrics shows a significant improvement in the quality of personalized response generation.
Abstract:The emergence of long-context text applications utilizing large language models (LLMs) has presented significant scalability challenges, particularly in memory footprint. The linear growth of the Key-Value (KV) cache responsible for storing attention keys and values to minimize redundant computations can lead to substantial increases in memory consumption, potentially causing models to fail to serve with limited memory resources. To address this issue, we propose a novel approach called Cache Sparse Representation (CSR), which converts the KV cache by transforming the dense Key-Value cache tensor into sparse indexes and weights, offering a more memory-efficient representation during LLM inference. Furthermore, we introduce NeuralDict, a novel neural network-based method for automatically generating the dictionary used in our sparse representation. Our extensive experiments demonstrate that CSR achieves performance comparable to state-of-the-art KV cache quantization algorithms while maintaining robust functionality in memory-constrained environments.
Abstract:Large Multimodal Models (LMMs) have shown significant progress in various complex vision tasks with the solid linguistic and reasoning capacity inherited from large language models (LMMs). Low-rank adaptation (LoRA) offers a promising method to integrate external knowledge into LMMs, compensating for their limitations on domain-specific tasks. However, the existing LoRA model serving is excessively computationally expensive and causes extremely high latency. In this paper, we present an end-to-end solution that empowers diverse vision tasks and enriches vision applications with LoRA LMMs. Our system, VaLoRA, enables accurate and efficient vision tasks by 1) an accuracy-aware LoRA adapter generation approach that generates LoRA adapters rich in domain-specific knowledge to meet application-specific accuracy requirements, 2) an adaptive-tiling LoRA adapters batching operator that efficiently computes concurrent heterogeneous LoRA adapters, and 3) a flexible LoRA adapter orchestration mechanism that manages application requests and LoRA adapters to achieve the lowest average response latency. We prototype VaLoRA on five popular vision tasks on three LMMs. Experiment results reveal that VaLoRA improves 24-62% of the accuracy compared to the original LMMs and reduces 20-89% of the latency compared to the state-of-the-art LoRA model serving systems.