Alert button
Picture for Dong Chen

Dong Chen

Alert button

PersonMAE: Person Re-Identification Pre-Training with Masked AutoEncoders

Nov 08, 2023
Hezhen Hu, Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Lu Yuan, Dong Chen, Houqiang Li

Pre-training is playing an increasingly important role in learning generic feature representation for Person Re-identification (ReID). We argue that a high-quality ReID representation should have three properties, namely, multi-level awareness, occlusion robustness, and cross-region invariance. To this end, we propose a simple yet effective pre-training framework, namely PersonMAE, which involves two core designs into masked autoencoders to better serve the task of Person Re-ID. 1) PersonMAE generates two regions from the given image with RegionA as the input and \textit{RegionB} as the prediction target. RegionA is corrupted with block-wise masking to mimic common occlusion in ReID and its remaining visible parts are fed into the encoder. 2) Then PersonMAE aims to predict the whole RegionB at both pixel level and semantic feature level. It encourages its pre-trained feature representations with the three properties mentioned above. These properties make PersonMAE compatible with downstream Person ReID tasks, leading to state-of-the-art performance on four downstream ReID tasks, i.e., supervised (holistic and occluded setting), and unsupervised (UDA and USL setting). Notably, on the commonly adopted supervised setting, PersonMAE with ViT-B backbone achieves 79.8% and 69.5% mAP on the MSMT17 and OccDuke datasets, surpassing the previous state-of-the-art by a large margin of +8.0 mAP, and +5.3 mAP, respectively.

Viaarxiv icon

SoybeanNet: Transformer-Based Convolutional Neural Network for Soybean Pod Counting from Unmanned Aerial Vehicle (UAV) Images

Oct 16, 2023
Jiajia Li, Raju Thada Magar, Dong Chen, Feng Lin, Dechun Wang, Xiang Yin, Weichao Zhuang, Zhaojian Li

Soybeans are a critical source of food, protein and oil, and thus have received extensive research aimed at enhancing their yield, refining cultivation practices, and advancing soybean breeding techniques. Within this context, soybean pod counting plays an essential role in understanding and optimizing production. Despite recent advancements, the development of a robust pod-counting algorithm capable of performing effectively in real-field conditions remains a significant challenge This paper presents a pioneering work of accurate soybean pod counting utilizing unmanned aerial vehicle (UAV) images captured from actual soybean fields in Michigan, USA. Specifically, this paper presents SoybeanNet, a novel point-based counting network that harnesses powerful transformer backbones for simultaneous soybean pod counting and localization with high accuracy. In addition, a new dataset of UAV-acquired images for soybean pod counting was created and open-sourced, consisting of 113 drone images with more than 260k manually annotated soybean pods captured under natural lighting conditions. Through comprehensive evaluations, SoybeanNet demonstrated superior performance over five state-of-the-art approaches when tested on the collected images. Remarkably, SoybeanNet achieved a counting accuracy of $84.51\%$ when tested on the testing dataset, attesting to its efficacy in real-world scenarios. The publication also provides both the source code (\url{}) and the labeled soybean dataset (\url{}), offering a valuable resource for future research endeavors in soybean pod counting and related fields.

* 12 pages, 5 figures 
Viaarxiv icon

Improving Vision Anomaly Detection with the Guidance of Language Modality

Oct 04, 2023
Dong Chen, Kaihang Pan, Guoming Wang, Yueting Zhuang, Siliang Tang

Recent years have seen a surge of interest in anomaly detection for tackling industrial defect detection, event detection, etc. However, existing unsupervised anomaly detectors, particularly those for the vision modality, face significant challenges due to redundant information and sparse latent space. Conversely, the language modality performs well due to its relatively single data. This paper tackles the aforementioned challenges for vision modality from a multimodal point of view. Specifically, we propose Cross-modal Guidance (CMG), which consists of Cross-modal Entropy Reduction (CMER) and Cross-modal Linear Embedding (CMLE), to tackle the redundant information issue and sparse space issue, respectively. CMER masks parts of the raw image and computes the matching score with the text. Then, CMER discards irrelevant pixels to make the detector focus on critical contents. To learn a more compact latent space for the vision anomaly detector, CMLE learns a correlation structure matrix from the language modality, and then the latent space of vision modality will be learned with the guidance of the matrix. Thereafter, the vision latent space will get semantically similar images closer. Extensive experiments demonstrate the effectiveness of the proposed methods. Particularly, CMG outperforms the baseline that only uses images by 16.81%. Ablation experiments further confirm the synergy among the proposed methods, as each component depends on the other to achieve optimal performance.

* 9 pages, 10 figures 
Viaarxiv icon

InstructDiffusion: A Generalist Modeling Interface for Vision Tasks

Sep 07, 2023
Zigang Geng, Binxin Yang, Tiankai Hang, Chen Li, Shuyang Gu, Ting Zhang, Jianmin Bao, Zheng Zhang, Han Hu, Dong Chen, Baining Guo

Figure 1 for InstructDiffusion: A Generalist Modeling Interface for Vision Tasks
Figure 2 for InstructDiffusion: A Generalist Modeling Interface for Vision Tasks
Figure 3 for InstructDiffusion: A Generalist Modeling Interface for Vision Tasks
Figure 4 for InstructDiffusion: A Generalist Modeling Interface for Vision Tasks

We present InstructDiffusion, a unifying and generic framework for aligning computer vision tasks with human instructions. Unlike existing approaches that integrate prior knowledge and pre-define the output space (e.g., categories and coordinates) for each vision task, we cast diverse vision tasks into a human-intuitive image-manipulating process whose output space is a flexible and interactive pixel space. Concretely, the model is built upon the diffusion process and is trained to predict pixels according to user instructions, such as encircling the man's left shoulder in red or applying a blue mask to the left car. InstructDiffusion could handle a variety of vision tasks, including understanding tasks (such as segmentation and keypoint detection) and generative tasks (such as editing and enhancement). It even exhibits the ability to handle unseen tasks and outperforms prior methods on novel datasets. This represents a significant step towards a generalist modeling interface for vision tasks, advancing artificial general intelligence in the field of computer vision.

Viaarxiv icon

Foundation Models in Smart Agriculture: Basics, Opportunities, and Challenges

Aug 18, 2023
Jiajia Li, Mingle Xu, Lirong Xiang, Dong Chen, Weichao Zhuang, Xunyuan Yin, Zhaojian Li

Figure 1 for Foundation Models in Smart Agriculture: Basics, Opportunities, and Challenges
Figure 2 for Foundation Models in Smart Agriculture: Basics, Opportunities, and Challenges
Figure 3 for Foundation Models in Smart Agriculture: Basics, Opportunities, and Challenges

The past decade has witnessed the rapid development of ML and DL methodologies in agricultural systems, showcased by great successes in variety of agricultural applications. However, these conventional ML/DL models have certain limitations: They heavily rely on large, costly-to-acquire labeled datasets for training, require specialized expertise for development and maintenance, and are mostly tailored for specific tasks, thus lacking generalizability. Recently, foundation models have demonstrated remarkable successes in language and vision tasks across various domains. These models are trained on a vast amount of data from multiple domains and modalities. Once trained, they can accomplish versatile tasks with just minor fine-tuning and minimal task-specific labeled data. Despite their proven effectiveness and huge potential, there has been little exploration of applying FMs to agriculture fields. Therefore, this study aims to explore the potential of FMs in the field of smart agriculture. In particular, we present conceptual tools and technical background to facilitate the understanding of the problem space and uncover new research directions in this field. To this end, we first review recent FMs in the general computer science domain and categorize them into four categories: language FMs, vision FMs, multimodal FMs, and reinforcement learning FMs. Subsequently, we outline the process of developing agriculture FMs and discuss their potential applications in smart agriculture. We also discuss the unique challenges associated with developing AFMs, including model training, validation, and deployment. Through this study, we contribute to the advancement of AI in agriculture by introducing AFMs as a promising paradigm that can significantly mitigate the reliance on extensive labeled datasets and enhance the efficiency, effectiveness, and generalization of agricultural AI systems.

* 16 pages, 3 figures 
Viaarxiv icon

Label-Efficient Learning in Agriculture: A Comprehensive Review

May 24, 2023
Jiajia Li, Dong Chen, Xinda Qi, Zhaojian Li, Yanbo Huang, Daniel Morris, Xiaobo Tan

Figure 1 for Label-Efficient Learning in Agriculture: A Comprehensive Review
Figure 2 for Label-Efficient Learning in Agriculture: A Comprehensive Review
Figure 3 for Label-Efficient Learning in Agriculture: A Comprehensive Review
Figure 4 for Label-Efficient Learning in Agriculture: A Comprehensive Review

The past decade has witnessed many great successes of machine learning (ML) and deep learning (DL) applications in agricultural systems, including weed control, plant disease diagnosis, agricultural robotics, and precision livestock management. Despite tremendous progresses, one downside of such ML/DL models is that they generally rely on large-scale labeled datasets for training, and the performance of such models is strongly influenced by the size and quality of available labeled data samples. In addition, collecting, processing, and labeling such large-scale datasets is extremely costly and time-consuming, partially due to the rising cost in human labor. Therefore, developing label-efficient ML/DL methods for agricultural applications has received significant interests among researchers and practitioners. In fact, there are more than 50 papers on developing and applying deep-learning-based label-efficient techniques to address various agricultural problems since 2016, which motivates the authors to provide a timely and comprehensive review of recent label-efficient ML/DL methods in agricultural applications. To this end, we first develop a principled taxonomy to organize these methods according to the degree of supervision, including weak supervision (i.e., active learning and semi-/weakly- supervised learning), and no supervision (i.e., un-/self- supervised learning), supplemented by representative state-of-the-art label-efficient ML/DL methods. In addition, a systematic review of various agricultural applications exploiting these label-efficient algorithms, such as precision agriculture, plant phenotyping, and postharvest quality assessment, is presented. Finally, we discuss the current problems and challenges, as well as future research directions. A well-classified paper list can be accessed at

* 34 pages, 23 figures 
Viaarxiv icon

Make-It-3D: High-Fidelity 3D Creation from A Single Image with Diffusion Prior

Apr 03, 2023
Junshu Tang, Tengfei Wang, Bo Zhang, Ting Zhang, Ran Yi, Lizhuang Ma, Dong Chen

Figure 1 for Make-It-3D: High-Fidelity 3D Creation from A Single Image with Diffusion Prior
Figure 2 for Make-It-3D: High-Fidelity 3D Creation from A Single Image with Diffusion Prior
Figure 3 for Make-It-3D: High-Fidelity 3D Creation from A Single Image with Diffusion Prior
Figure 4 for Make-It-3D: High-Fidelity 3D Creation from A Single Image with Diffusion Prior

In this work, we investigate the problem of creating high-fidelity 3D content from only a single image. This is inherently challenging: it essentially involves estimating the underlying 3D geometry while simultaneously hallucinating unseen textures. To address this challenge, we leverage prior knowledge from a well-trained 2D diffusion model to act as 3D-aware supervision for 3D creation. Our approach, Make-It-3D, employs a two-stage optimization pipeline: the first stage optimizes a neural radiance field by incorporating constraints from the reference image at the frontal view and diffusion prior at novel views; the second stage transforms the coarse model into textured point clouds and further elevates the realism with diffusion prior while leveraging the high-quality textures from the reference image. Extensive experiments demonstrate that our method outperforms prior works by a large margin, resulting in faithful reconstructions and impressive visual quality. Our method presents the first attempt to achieve high-quality 3D creation from a single image for general objects and enables various applications such as text-to-3D creation and texture editing.

* 17 pages, 18 figures, Project page: 
Viaarxiv icon

IRGen: Generative Modeling for Image Retrieval

Mar 27, 2023
Yidan Zhang, Ting Zhang, Dong Chen, Yujing Wang, Qi Chen, Xing Xie, Hao Sun, Weiwei Deng, Qi Zhang, Fan Yang, Mao Yang, Qingmin Liao, Baining Guo

Figure 1 for IRGen: Generative Modeling for Image Retrieval
Figure 2 for IRGen: Generative Modeling for Image Retrieval
Figure 3 for IRGen: Generative Modeling for Image Retrieval
Figure 4 for IRGen: Generative Modeling for Image Retrieval

While generative modeling has been ubiquitous in natural language processing and computer vision, its application to image retrieval remains unexplored. In this paper, we recast image retrieval as a form of generative modeling by employing a sequence-to-sequence model, contributing to the current unified theme. Our framework, IRGen, is a unified model that enables end-to-end differentiable search, thus achieving superior performance thanks to direct optimization. While developing IRGen we tackle the key technical challenge of converting an image into quite a short sequence of semantic units in order to enable efficient and effective retrieval. Empirical experiments demonstrate that our model yields significant improvement over three commonly used benchmarks, for example, 22.9\% higher than the best baseline method in precision@10 on In-shop dataset with comparable recall@10 score.

Viaarxiv icon