Abstract:Compositional generalization is the ability of generalizing novel compositions from seen primitives, and has received much attention in vision-and-language (V\&L) recently. Due to the multi-modal nature of V\&L tasks, the primitives composing compositions source from different modalities, resulting in multi-sourced novel compositions. However, the generalization ability over multi-sourced novel compositions, \textit{i.e.}, multi-sourced compositional generalization (MSCG) remains unexplored. In this paper, we explore MSCG in the context of visual question answering (VQA), and propose a retrieval-augmented training framework to enhance the MSCG ability of VQA models by learning unified representations for primitives from different modalities. Specifically, semantically equivalent primitives are retrieved for each primitive in the training samples, and the retrieved features are aggregated with the original primitive to refine the model. This process helps the model learn consistent representations for the same semantic primitives across different modalities. To evaluate the MSCG ability of VQA models, we construct a new GQA-MSCG dataset based on the GQA dataset, in which samples include three types of novel compositions composed of primitives from different modalities. Experimental results demonstrate the effectiveness of the proposed framework. We release GQA-MSCG at https://github.com/NeverMoreLCH/MSCG.
Abstract:Recent years have seen rapid advances in AI-driven image generation. Early diffusion models emphasized perceptual quality, while newer multimodal models like GPT-4o-image integrate high-level reasoning, improving semantic understanding and structural composition. Scientific illustration generation exemplifies this evolution: unlike general image synthesis, it demands accurate interpretation of technical content and transformation of abstract ideas into clear, standardized visuals. This task is significantly more knowledge-intensive and laborious, often requiring hours of manual work and specialized tools. Automating it in a controllable, intelligent manner would provide substantial practical value. Yet, no benchmark currently exists to evaluate AI on this front. To fill this gap, we introduce SridBench, the first benchmark for scientific figure generation. It comprises 1,120 instances curated from leading scientific papers across 13 natural and computer science disciplines, collected via human experts and MLLMs. Each sample is evaluated along six dimensions, including semantic fidelity and structural accuracy. Experimental results reveal that even top-tier models like GPT-4o-image lag behind human performance, with common issues in text/visual clarity and scientific correctness. These findings highlight the need for more advanced reasoning-driven visual generation capabilities.
Abstract:We investigate the problem of identifying the optimal scoring rule within the principal-agent framework for online information acquisition problem. We focus on the principal's perspective, seeking to determine the desired scoring rule through interactions with the agent. To address this challenge, we propose two algorithms: OIAFC and OIAFB, tailored for fixed confidence and fixed budget settings, respectively. Our theoretical analysis demonstrates that OIAFC can extract the desired $(\epsilon, \delta)$-scoring rule with a efficient instance-dependent sample complexity or an instance-independent sample complexity. Our analysis also shows that OIAFB matches the instance-independent performance bound of OIAFC, while both algorithms share the same complexity across fixed confidence and fixed budget settings.
Abstract:Current text-to-image (T2I) generation models achieve promising results, but they fail on the scenarios where the knowledge implied in the text prompt is uncertain. For example, a T2I model released in February would struggle to generate a suitable poster for a movie premiering in April, because the character designs and styles are uncertain to the model. To solve this problem, we propose an Internet-Augmented text-to-image generation (IA-T2I) framework to compel T2I models clear about such uncertain knowledge by providing them with reference images. Specifically, an active retrieval module is designed to determine whether a reference image is needed based on the given text prompt; a hierarchical image selection module is introduced to find the most suitable image returned by an image search engine to enhance the T2I model; a self-reflection mechanism is presented to continuously evaluate and refine the generated image to ensure faithful alignment with the text prompt. To evaluate the proposed framework's performance, we collect a dataset named Img-Ref-T2I, where text prompts include three types of uncertain knowledge: (1) known but rare. (2) unknown. (3) ambiguous. Moreover, we carefully craft a complex prompt to guide GPT-4o in making preference evaluation, which has been shown to have an evaluation accuracy similar to that of human preference evaluation. Experimental results demonstrate the effectiveness of our framework, outperforming GPT-4o by about 30% in human evaluation.
Abstract:Multimodal reasoning, which integrates language and visual cues into problem solving and decision making, is a fundamental aspect of human intelligence and a crucial step toward artificial general intelligence. However, the evaluation of multimodal reasoning capabilities in Multimodal Large Language Models (MLLMs) remains inadequate. Most existing reasoning benchmarks are constrained by limited data size, narrow domain coverage, and unstructured knowledge distribution. To close these gaps, we introduce MDK12-Bench, a multi-disciplinary benchmark assessing the reasoning capabilities of MLLMs via real-world K-12 examinations. Spanning six disciplines (math, physics, chemistry, biology, geography, and information science), our benchmark comprises 140K reasoning instances across diverse difficulty levels from primary school to 12th grade. It features 6,827 instance-level knowledge point annotations based on a well-organized knowledge structure, detailed answer explanations, difficulty labels and cross-year partitions, providing a robust platform for comprehensive evaluation. Additionally, we present a novel dynamic evaluation framework to mitigate data contamination issues by bootstrapping question forms, question types, and image styles during evaluation. Extensive experiment on MDK12-Bench reveals the significant limitation of current MLLMs in multimodal reasoning. The findings on our benchmark provide insights into the development of the next-generation models. Our data and codes are available at https://github.com/LanceZPF/MDK12.
Abstract:Unified models (UniMs) for multimodal understanding and generation have recently received much attention in the area of vision and language. Existing UniMs are designed to simultaneously learn both multimodal understanding and generation capabilities, demanding substantial computational resources, and often struggle to generate interleaved text-image. We present ARMOR, a resource-efficient and pure autoregressive framework that achieves both understanding and generation by fine-tuning existing multimodal large language models (MLLMs). Specifically, ARMOR extends existing MLLMs from three perspectives: (1) For model architecture, an asymmetric encoder-decoder architecture with a forward-switching mechanism is introduced to unify embedding space integrating textual and visual modalities for enabling natural text-image interleaved generation with minimal computational overhead. (2) For training data, a meticulously curated, high-quality interleaved dataset is collected for fine-tuning MLLMs. (3) For the training algorithm, we propose a ``what or how to generate" algorithm to empower existing MLLMs with multimodal generation capabilities while preserving their multimodal understanding capabilities, through three progressive training stages based on the collected dataset. Experimental results demonstrate that ARMOR upgrades existing MLLMs to UniMs with promising image generation capabilities, using limited training resources. Our code will be released soon at https://armor.github.io.
Abstract:Compositional generalization is the capability of a model to understand novel compositions composed of seen concepts. There are multiple levels of novel compositions including phrase-phrase level, phrase-word level, and word-word level. Existing methods achieve promising compositional generalization, but the consistency of compositional generalization across multiple levels of novel compositions remains unexplored. The consistency refers to that a model should generalize to a phrase-phrase level novel composition, and phrase-word/word-word level novel compositions that can be derived from it simultaneously. In this paper, we propose a meta-learning based framework, for achieving consistent compositional generalization across multiple levels. The basic idea is to progressively learn compositions from simple to complex for consistency. Specifically, we divide the original training set into multiple validation sets based on compositional complexity, and introduce multiple meta-weight-nets to generate sample weights for samples in different validation sets. To fit the validation sets in order of increasing compositional complexity, we optimize the parameters of each meta-weight-net independently and sequentially in a multilevel optimization manner. We build a GQA-CCG dataset to quantitatively evaluate the consistency. Experimental results on visual question answering and temporal video grounding, demonstrate the effectiveness of the proposed framework. We release GQA-CCG at https://github.com/NeverMoreLCH/CCG.
Abstract:Multimodal Large Language Models (MLLMs) have made significant strides in visual understanding and generation tasks. However, generating interleaved image-text content remains a challenge, which requires integrated multimodal understanding and generation abilities. While the progress in unified models offers new solutions, existing benchmarks are insufficient for evaluating these methods due to data size and diversity limitations. To bridge this gap, we introduce GATE OpenING (OpenING), a comprehensive benchmark comprising 5,400 high-quality human-annotated instances across 56 real-world tasks. OpenING covers diverse daily scenarios such as travel guide, design, and brainstorming, offering a robust platform for challenging interleaved generation methods. In addition, we present IntJudge, a judge model for evaluating open-ended multimodal generation methods. Trained with a novel data pipeline, our IntJudge achieves an agreement rate of 82. 42% with human judgments, outperforming GPT-based evaluators by 11.34%. Extensive experiments on OpenING reveal that current interleaved generation methods still have substantial room for improvement. Key findings on interleaved image-text generation are further presented to guide the development of next-generation models. The OpenING is open-sourced at https://opening-benchmark.github.io.
Abstract:In this paper, we make the first attempt to align diffusion models for image inpainting with human aesthetic standards via a reinforcement learning framework, significantly improving the quality and visual appeal of inpainted images. Specifically, instead of directly measuring the divergence with paired images, we train a reward model with the dataset we construct, consisting of nearly 51,000 images annotated with human preferences. Then, we adopt a reinforcement learning process to fine-tune the distribution of a pre-trained diffusion model for image inpainting in the direction of higher reward. Moreover, we theoretically deduce the upper bound on the error of the reward model, which illustrates the potential confidence of reward estimation throughout the reinforcement alignment process, thereby facilitating accurate regularization. Extensive experiments on inpainting comparison and downstream tasks, such as image extension and 3D reconstruction, demonstrate the effectiveness of our approach, showing significant improvements in the alignment of inpainted images with human preference compared with state-of-the-art methods. This research not only advances the field of image inpainting but also provides a framework for incorporating human preference into the iterative refinement of generative models based on modeling reward accuracy, with broad implications for the design of visually driven AI applications. Our code and dataset are publicly available at https://prefpaint.github.io.
Abstract:The capability to process multiple images is crucial for Large Vision-Language Models (LVLMs) to develop a more thorough and nuanced understanding of a scene. Recent multi-image LVLMs have begun to address this need. However, their evaluation has not kept pace with their development. To fill this gap, we introduce the Multimodal Multi-image Understanding (MMIU) benchmark, a comprehensive evaluation suite designed to assess LVLMs across a wide range of multi-image tasks. MMIU encompasses 7 types of multi-image relationships, 52 tasks, 77K images, and 11K meticulously curated multiple-choice questions, making it the most extensive benchmark of its kind. Our evaluation of 24 popular LVLMs, including both open-source and proprietary models, reveals significant challenges in multi-image comprehension, particularly in tasks involving spatial understanding. Even the most advanced models, such as GPT-4o, achieve only 55.7% accuracy on MMIU. Through multi-faceted analytical experiments, we identify key performance gaps and limitations, providing valuable insights for future model and data improvements. We aim for MMIU to advance the frontier of LVLM research and development, moving us toward achieving sophisticated multimodal multi-image user interactions.