Abstract:Voice anonymization protects speaker privacy by concealing identity while preserving linguistic and paralinguistic content. Self-supervised learning (SSL) representations encode linguistic features but preserve speaker traits. We propose a novel speaker-embedding-free framework called SEF-MK. Instead of using a single k-means model trained on the entire dataset, SEF-MK anonymizes SSL representations for each utterance by randomly selecting one of multiple k-means models, each trained on a different subset of speakers. We explore this approach from both attacker and user perspectives. Extensive experiments show that, compared to a single k-means model, SEF-MK with multiple k-means models better preserves linguistic and emotional content from the user's viewpoint. However, from the attacker's perspective, utilizing multiple k-means models boosts the effectiveness of privacy attacks. These insights can aid users in designing voice anonymization systems to mitigate attacker threats.
Abstract:Voice anonymisation aims to conceal the voice identity of speakers in speech recordings. Privacy protection is usually estimated from the difficulty of using a speaker verification system to re-identify the speaker post-anonymisation. Performance assessments are therefore dependent on the verification model as well as the anonymisation system. There is hence potential for privacy protection to be overestimated when the verification system is poorly trained, perhaps with mismatched data. In this paper, we demonstrate the insidious risk of overestimating anonymisation performance and show examples of exaggerated performance reported in the literature. For the worst case we identified, performance is overestimated by 74% relative. We then introduce a means to detect when performance assessment might be untrustworthy and show that it can identify all overestimation scenarios presented in the paper. Our solution is openly available as a fork of the 2024 VoicePrivacy Challenge evaluation toolkit.
Abstract:Given the increasing privacy concerns from identity theft and the re-identification of speakers through content in the speech field, this paper proposes a prompt-based speech generation pipeline that ensures dual anonymization of both speaker identity and spoken content. This is addressed through 1) generating a speaker identity unlinkable to the source speaker, controlled by descriptors, and 2) replacing sensitive content within the original text using a name entity recognition model and a large language model. The pipeline utilizes the anonymized speaker identity and text to generate high-fidelity, privacy-friendly speech via a text-to-speech synthesis model. Experimental results demonstrate an achievement of significant privacy protection while maintaining a decent level of content retention and audio quality. This paper also investigates the impact of varying speaker descriptions on the utility and privacy of generated speech to determine potential biases.
Abstract:Assessment of children's speaking fluency in education is well researched for majority languages, but remains highly challenging for low resource languages. This paper proposes a system to automatically assess fluency by combining a fine-tuned multilingual ASR model, an objective metrics extraction stage, and a generative pre-trained transformer (GPT) network. The objective metrics include phonetic and word error rates, speech rate, and speech-pause duration ratio. These are interpreted by a GPT-based classifier guided by a small set of human-evaluated ground truth examples, to score fluency. We evaluate the proposed system on a dataset of children's speech in two low-resource languages, Tamil and Malay and compare the classification performance against Random Forest and XGBoost, as well as using ChatGPT-4o to predict fluency directly from speech input. Results demonstrate that the proposed approach achieves significantly higher accuracy than multimodal GPT or other methods.
Abstract:Target speaker extraction (TSE) is essential in speech processing applications, particularly in scenarios with complex acoustic environments. Current TSE systems face challenges in limited data diversity and a lack of robustness in real-world conditions, primarily because they are trained on artificially mixed datasets with limited speaker variability and unrealistic noise profiles. To address these challenges, we propose Libri2Vox, a new dataset that combines clean target speech from the LibriTTS dataset with interference speech from the noisy VoxCeleb2 dataset, providing a large and diverse set of speakers under realistic noisy conditions. We also augment Libri2Vox with synthetic speakers generated using state-of-the-art speech generative models to enhance speaker diversity. Additionally, to further improve the effectiveness of incorporating synthetic data, curriculum learning is implemented to progressively train TSE models with increasing levels of difficulty. Extensive experiments across multiple TSE architectures reveal varying degrees of improvement, with SpeakerBeam demonstrating the most substantial gains: a 1.39 dB improvement in signal-to-distortion ratio (SDR) on the Libri2Talker test set compared to baseline training. Building upon these results, we further enhanced performance through our speaker similarity-based curriculum learning approach with the Conformer architecture, achieving an additional 0.78 dB improvement over conventional random sampling methods in which data samples are randomly selected from the entire dataset. These results demonstrate the complementary benefits of diverse real-world data, synthetic speaker augmentation, and structured training strategies in building robust TSE systems.
Abstract:The First VoicePrivacy Attacker Challenge is a new kind of challenge organized as part of the VoicePrivacy initiative and supported by ICASSP 2025 as the SP Grand Challenge It focuses on developing attacker systems against voice anonymization, which will be evaluated against a set of anonymization systems submitted to the VoicePrivacy 2024 Challenge. Training, development, and evaluation datasets are provided along with a baseline attacker system. Participants shall develop their attacker systems in the form of automatic speaker verification systems and submit their scores on the development and evaluation data to the organizers. To do so, they can use any additional training data and models, provided that they are openly available and declared before the specified deadline. The metric for evaluation is equal error rate (EER). Results will be presented at the ICASSP 2025 special session to which 5 selected top-ranked participants will be invited to submit and present their challenge systems.
Abstract:In real-world applications, it is challenging to build a speaker verification system that is simultaneously robust against common threats, including spoofing attacks, channel mismatch, and domain mismatch. Traditional automatic speaker verification (ASV) systems often tackle these issues separately, leading to suboptimal performance when faced with simultaneous challenges. In this paper, we propose an integrated framework that incorporates pair-wise learning and spoofing attack simulation into the meta-learning paradigm to enhance robustness against these multifaceted threats. This novel approach employs an asymmetric dual-path model and a multi-task learning strategy to handle ASV, anti-spoofing, and spoofing-aware ASV tasks concurrently. A new testing dataset, CNComplex, is introduced to evaluate system performance under these combined threats. Experimental results demonstrate that our integrated model significantly improves performance over traditional ASV systems across various scenarios, showcasing its potential for real-world deployment. Additionally, the proposed framework's ability to generalize across different conditions highlights its robustness and reliability, making it a promising solution for practical ASV applications.
Abstract:It is challenging to accelerate the training process while ensuring both high-quality generated voices and acceptable inference speed. In this paper, we propose a novel neural vocoder called InstructSing, which can converge much faster compared with other neural vocoders while maintaining good performance by integrating differentiable digital signal processing and adversarial training. It includes one generator and two discriminators. Specifically, the generator incorporates a harmonic-plus-noise (HN) module to produce 8kHz audio as an instructive signal. Subsequently, the HN module is connected with an extended WaveNet by an UNet-based module, which transforms the output of the HN module to a latent variable sequence containing essential periodic and aperiodic information. In addition to the latent sequence, the extended WaveNet also takes the mel-spectrogram as input to generate 48kHz high-fidelity singing voices. In terms of discriminators, we combine a multi-period discriminator, as originally proposed in HiFiGAN, with a multi-resolution multi-band STFT discriminator. Notably, InstructSing achieves comparable voice quality to other neural vocoders but with only one-tenth of the training steps on a 4 NVIDIA V100 GPU machine\footnote{{Demo page: \href{https://wavelandspeech.github.io/instructsing/}{\texttt{https://wavelandspeech.github.io/inst\\ructsing/}}}}. We plan to open-source our code and pretrained model once the paper get accepted.
Abstract:A general disentanglement-based speaker anonymization system typically separates speech into content, speaker, and prosody features using individual encoders. This paper explores how to adapt such a system when a new speech attribute, for example, emotion, needs to be preserved to a greater extent. While existing systems are good at anonymizing speaker embeddings, they are not designed to preserve emotion. Two strategies for this are examined. First, we show that integrating emotion embeddings from a pre-trained emotion encoder can help preserve emotional cues, even though this approach slightly compromises privacy protection. Alternatively, we propose an emotion compensation strategy as a post-processing step applied to anonymized speaker embeddings. This conceals the original speaker's identity and reintroduces the emotional traits lost during speaker embedding anonymization. Specifically, we model the emotion attribute using support vector machines to learn separate boundaries for each emotion. During inference, the original speaker embedding is processed in two ways: one, by an emotion indicator to predict emotion and select the emotion-matched SVM accurately; and two, by a speaker anonymizer to conceal speaker characteristics. The anonymized speaker embedding is then modified along the corresponding SVM boundary towards an enhanced emotional direction to save the emotional cues. The proposed strategies are also expected to be useful for adapting a general disentanglement-based speaker anonymization system to preserve other target paralinguistic attributes, with potential for a range of downstream tasks.
Abstract:The VoicePrivacy Challenge promotes the development of voice anonymisation solutions for speech technology. In this paper we present a systematic overview and analysis of the second edition held in 2022. We describe the voice anonymisation task and datasets used for system development and evaluation, present the different attack models used for evaluation, and the associated objective and subjective metrics. We describe three anonymisation baselines, provide a summary description of the anonymisation systems developed by challenge participants, and report objective and subjective evaluation results for all. In addition, we describe post-evaluation analyses and a summary of related work reported in the open literature. Results show that solutions based on voice conversion better preserve utility, that an alternative which combines automatic speech recognition with synthesis achieves greater privacy, and that a privacy-utility trade-off remains inherent to current anonymisation solutions. Finally, we present our ideas and priorities for future VoicePrivacy Challenge editions.