We consider the geometric ergodicity of the Stochastic Gradient Langevin Dynamics (SGLD) algorithm under nonconvexity settings. Via the technique of reflection coupling, we prove the Wasserstein contraction of SGLD when the target distribution is log-concave only outside some compact set. The time discretization and the minibatch in SGLD introduce several difficulties when applying the reflection coupling, which are addressed by a series of careful estimates of conditional expectations. As a direct corollary, the SGLD with constant step size has an invariant distribution and we are able to obtain its geometric ergodicity in terms of $W_1$ distance. The generalization to non-gradient drifts is also included.
Building segmentation from aerial images and 3D laser scanning (LiDAR) is a challenging task due to the diversity of backgrounds, building textures, and image quality. While current research using different types of convolutional and transformer networks has considerably improved the performance on this task, even more accurate segmentation methods for buildings are desirable for applications such as automatic mapping. In this study, we propose a general framework termed \emph{BuildSeg} employing a generic approach that can be quickly applied to segment buildings. Different data sources were combined to increase generalization performance. The approach yields good results for different data sources as shown by experiments on high-resolution multi-spectral and LiDAR imagery of cities in Norway, Denmark and France. We applied ConvNeXt and SegFormer based models on the high resolution aerial image dataset from the MapAI-competition. The methods achieved an IOU of 0.7902 and a boundary IOU of 0.6185. We used post-processing to account for the rectangular shape of the objects. This increased the boundary IOU from 0.6185 to 0.6189.
Cardiac segmentation is in great demand for clinical practice. Due to the enormous labor of manual delineation, unsupervised segmentation is desired. The ill-posed optimization problem of this task is inherently challenging, requiring well-designed constraints. In this work, we propose an unsupervised framework for multi-class segmentation with both intensity and shape constraints. Firstly, we extend a conventional non-convex energy function as an intensity constraint and implement it with U-Net. For shape constraint, synthetic images are generated from anatomical labels via image-to-image translation, as shape supervision for the segmentation network. Moreover, augmentation invariance is applied to facilitate the segmentation network to learn the latent features in terms of shape. We evaluated the proposed framework using the public datasets from MICCAI2019 MSCMR Challenge and achieved promising results on cardiac MRIs with Dice scores of 0.5737, 0.7796, and 0.6287 in Myo, LV, and RV, respectively.
Medical images are generally acquired with limited field-of-view (FOV), which could lead to incomplete regions of interest (ROI), and thus impose a great challenge on medical image analysis. This is particularly evident for the learning-based multi-target landmark detection, where algorithms could be misleading to learn primarily the variation of background due to the varying FOV, failing the detection of targets. Based on learning a navigation policy, instead of predicting targets directly, reinforcement learning (RL)-based methods have the potential totackle this challenge in an efficient manner. Inspired by this, in this work we propose a multi-agent RL framework for simultaneous multi-target landmark detection. This framework is aimed to learn from incomplete or (and) complete images to form an implicit knowledge of global structure, which is consolidated during the training stage for the detection of targets from either complete or incomplete test images. To further explicitly exploit the global structural information from incomplete images, we propose to embed a shape model into the RL process. With this prior knowledge, the proposed RL model can not only localize dozens of targetssimultaneously, but also work effectively and robustly in the presence of incomplete images. We validated the applicability and efficacy of the proposed method on various multi-target detection tasks with incomplete images from practical clinics, using body dual-energy X-ray absorptiometry (DXA), cardiac MRI and head CT datasets. Results showed that our method could predict whole set of landmarks with incomplete training images up to 80% missing proportion (average distance error 2.29 cm on body DXA), and could detect unseen landmarks in regions with missing image information outside FOV of target images (average distance error 6.84 mm on 3D half-head CT).
With the rapid development of classical and quantum machine learning, a large number of machine learning frameworks have been proposed. However, existing machine learning frameworks usually only focus on classical or quantum, rather than both. Therefore, based on VQNet 1.0, we further propose VQNet 2.0, a new generation of unified classical and quantum machine learning framework that supports hybrid optimization. The core library of the framework is implemented in C++, and the user level is implemented in Python, and it supports deployment on quantum and classical hardware. In this article, we analyze the development trend of the new generation machine learning framework and introduce the design principles of VQNet 2.0 in detail: unity, practicality, efficiency, and compatibility, as well as full particulars of implementation. We illustrate the functions of VQNet 2.0 through several basic applications, including classical convolutional neural networks, quantum autoencoders, hybrid classical-quantum networks, etc. After that, through extensive experiments, we demonstrate that the operation speed of VQNet 2.0 is higher than the comparison method. Finally, through extensive experiments, we demonstrate that VQNet 2.0 can deploy on different hardware platforms, the overall calculation speed is faster than the comparison method. It also can be mixed and optimized with quantum circuits composed of multiple quantum computing libraries.
With the increasing ability of large language models (LLMs), in-context learning (ICL) has become a new paradigm for natural language processing (NLP), where LLMs make predictions only based on contexts augmented with a few training examples. It has been a new trend exploring ICL to evaluate and extrapolate the ability of LLMs. In this paper, we aim to survey and summarize the progress, challenges, and future work in ICL. We first present a formal definition of ICL and clarify its correlation to related studies. Then, we organize and discuss advanced techniques of ICL, including training strategies, prompting strategies, and so on. Finally, we present the challenges of ICL and provide potential directions for further research. We hope our work can encourage more research on uncovering how ICL works and improving ICL in future work.
Traditional multilingual neural machine translation (MNMT) uses a single model to translate all directions. However, with the increasing scale of language pairs, simply using a single model for massive MNMT brings new challenges: parameter tension and large computations. In this paper, we revisit multi-way structures by assigning an individual branch for each language (group). Despite being a simple architecture, it is challenging to train de-centralized models due to the lack of constraints to align representations from all languages. We propose a localized training recipe to map different branches into a unified space, resulting in an efficient detachable model, Lego-MT. For a fair comparison, we collect data from OPUS and build the first large-scale open-source translation benchmark covering 7 language-centric data, each containing 445 language pairs. Experiments show that Lego-MT (1.2B) brings gains of more than 4 BLEU while outperforming M2M-100 (12B) (We will public all training data, models, and checkpoints)
With increasing scale, large language models demonstrate both quantitative improvement and new qualitative capabilities, especially as zero-shot learners, like GPT-3. However, these results rely heavily on delicate prompt design and large computation. In this work, we explore whether the strong zero-shot ability could be achieved at a smaller model scale without any external supervised data. To achieve this goal, we revisit masked language modeling and present a geometry-guided self-supervised learning method (Go-tuningfor short) by taking a small number of task-aware self-supervised data to update language models further. Experiments show that Go-tuning can enable T5-small (80M) competitive zero-shot results compared with large language models, such as T5-XL (3B). We also apply Go-tuning on multi-task settings and develop a multi-task model, mgo-T5 (250M). It can reach the average performance of OPT (175B) on 9 datasets.
End-to-end Speech Translation (E2E ST) aims to translate source speech into target translation without generating the intermediate transcript. However, existing approaches for E2E ST degrade considerably when only limited ST data are available. We observe that an ST model's performance strongly correlates with its embedding similarity from speech and transcript. In this paper, we propose Word-Aligned COntrastive learning (WACO), a novel method for few-shot speech-to-text translation. Our key idea is bridging word-level representations for both modalities via contrastive learning. We evaluate WACO and other methods on the MuST-C dataset, a widely used ST benchmark. Our experiments demonstrate that WACO outperforms the best baseline methods by 0.7-8.5 BLEU points with only 1-hour parallel data. Code is available at https://anonymous.4open.science/r/WACO .
Is it possible to leverage large scale raw and raw parallel corpora to build a general learned metric? Existing learned metrics have gaps to human judgements, are model-dependent or are limited to the domains or tasks where human ratings are available. In this paper, we propose SEScore2, a model-based metric pretrained over million-scale synthetic dataset constructed by our novel retrieval augmented data synthesis pipeline. SEScore2 achieves high correlation to human judgements without any human rating supervisions. Importantly, our unsupervised SEScore2 can outperform supervised metrics, which are trained on the News human ratings, at the TED domain. We evaluate SEScore2 over four text generation tasks across three languages. SEScore2 outperforms all prior unsupervised evaluation metrics in machine translation, speech translation, data-to-text and dialogue generation, with average Kendall improvements 0.158. SEScore2 even outperforms SOTA supervised BLEURT at data-to-text, dialogue generation and overall correlation.