Abstract:Simultaneous speech translation (SST) takes streaming speech input and generates text translation on the fly. Existing methods either have high latency due to recomputation of input representations, or fall behind of offline ST in translation quality. In this paper, we propose FASST, a fast large language model based method for streaming speech translation. We propose blockwise-causal speech encoding and consistency mask, so that streaming speech input can be encoded incrementally without recomputation. Furthermore, we develop a two-stage training strategy to optimize FASST for simultaneous inference. We evaluate FASST and multiple strong prior models on MuST-C dataset. Experiment results show that FASST achieves the best quality-latency trade-off. It outperforms the previous best model by an average of 1.5 BLEU under the same latency for English to Spanish translation.
Abstract:This paper describes CMU's submission to the IWSLT 2024 Simultaneous Speech Translation (SST) task for translating English speech to German text in a streaming manner. Our end-to-end speech-to-text (ST) system integrates the WavLM speech encoder, a modality adapter, and the Llama2-7B-Base model as the decoder. We employ a two-stage training approach: initially, we align the representations of speech and text, followed by full fine-tuning. Both stages are trained on MuST-c v2 data with cross-entropy loss. We adapt our offline ST model for SST using a simple fixed hold-n policy. Experiments show that our model obtains an offline BLEU score of 31.1 and a BLEU score of 29.5 under 2 seconds latency on the MuST-C-v2 tst-COMMON.
Abstract:Structure-based drug design aims at generating high affinity ligands with prior knowledge of 3D target structures. Existing methods either use conditional generative model to learn the distribution of 3D ligands given target binding sites, or iteratively modify molecules to optimize a structure-based activity estimator. The former is highly constrained by data quantity and quality, which leaves optimization-based approaches more promising in practical scenario. However, existing optimization-based approaches choose to edit molecules in 2D space, and use molecular docking to estimate the activity using docking predicted 3D target-ligand complexes. The misalignment between the action space and the objective hinders the performance of these models, especially for those employ deep learning for acceleration. In this work, we propose MolEdit3D to combine 3D molecular generation with optimization frameworks. We develop a novel 3D graph editing model to generate molecules using fragments, and pre-train this model on abundant 3D ligands for learning target-independent properties. Then we employ a target-guided self-learning strategy to improve target-related properties using self-sampled molecules. MolEdit3D achieves state-of-the-art performance on majority of the evaluation metrics, and demonstrate strong capability of capturing both target-dependent and -independent properties.
Abstract:We introduce the Efficient Monotonic Multihead Attention (EMMA), a state-of-the-art simultaneous translation model with numerically-stable and unbiased monotonic alignment estimation. In addition, we present improved training and inference strategies, including simultaneous fine-tuning from an offline translation model and reduction of monotonic alignment variance. The experimental results demonstrate that the proposed model attains state-of-the-art performance in simultaneous speech-to-text translation on the Spanish and English translation task.
Abstract:Large language models (LLMs) have demonstrated remarkable language proficiency, but they face challenges when solving interactive tasks independently. Existing methods either rely on gradient access, which is often inaccessible in state-of-the-art LLMs like GPT-4, or necessitate diverse and high-quality in-context demonstrations. In this study, we propose LLM-PO, a novel approach that enables LLMs to address these tasks without gradient access or extensive demonstrations. The key idea is to maintain a text-based plan and ask LLMs to reflect on pros and cons of the current plan based on experience collected with it, to update the plan, and to collect more experiences with the new plan. Experiments on HotpotQA demonstrate that LLM-PO achieves higher or on par success rates compared to in-context learning (ICL) baselines while requiring less inference cost.
Abstract:End-to-end Speech Translation (E2E ST) aims to translate source speech into target translation without generating the intermediate transcript. However, existing approaches for E2E ST degrade considerably when only limited ST data are available. We observe that an ST model's performance strongly correlates with its embedding similarity from speech and transcript. In this paper, we propose Word-Aligned COntrastive learning (WACO), a novel method for few-shot speech-to-text translation. Our key idea is bridging word-level representations for both modalities via contrastive learning. We evaluate WACO and other methods on the MuST-C dataset, a widely used ST benchmark. Our experiments demonstrate that WACO outperforms the best baseline methods by 0.7-8.5 BLEU points with only 1-hour parallel data. Code is available at https://anonymous.4open.science/r/WACO .
Abstract:How can we extend a pre-trained model to many language understanding tasks, without labeled or additional unlabeled data? Pre-trained language models (PLMs) have been effective for a wide range of NLP tasks. However, existing approaches either require fine-tuning on downstream labeled datasets or manually constructing proper prompts. In this paper, we propose nonparametric prompting PLM (NPPrompt) for fully zero-shot language understanding. Unlike previous methods, NPPrompt uses only pre-trained language models and does not require any labeled data or additional raw corpus for further fine-tuning, nor does it rely on humans to construct a comprehensive set of prompt label words. We evaluate NPPrompt against previous major few-shot and zero-shot learning methods on diverse NLP tasks: including text classification, text entailment, similar text retrieval, and paraphrasing. Experimental results demonstrate that our NPPrompt outperforms the previous best fully zero-shot method by big margins, with absolute gains of 12.8% in accuracy on text classification and 18.9% on the GLUE benchmark.
Abstract:Can language models (LM) ground question-answering (QA) tasks in the knowledge base via inherent relational reasoning ability? While previous models that use only LMs have seen some success on many QA tasks, more recent methods include knowledge graphs (KG) to complement LMs with their more logic-driven implicit knowledge. However, effectively extracting information from structured data, like KGs, empowers LMs to remain an open question, and current models rely on graph techniques to extract knowledge. In this paper, we propose to solely leverage the LMs to combine the language and knowledge for knowledge based question-answering with flexibility, breadth of coverage and structured reasoning. Specifically, we devise a knowledge construction method that retrieves the relevant context with a dynamic hop, which expresses more comprehensivenes than traditional GNN-based techniques. And we devise a deep fusion mechanism to further bridge the information exchanging bottleneck between the language and the knowledge. Extensive experiments show that our model consistently demonstrates its state-of-the-art performance over CommensenseQA benchmark, showcasing the possibility to leverage LMs solely to robustly ground QA into the knowledge base.
Abstract:Training speech translation (ST) models requires large and high-quality datasets. MuST-C is one of the most widely used ST benchmark datasets. It contains around 400 hours of speech-transcript-translation data for each of the eight translation directions. This dataset passes several quality-control filters during creation. However, we find that MuST-C still suffers from three major quality issues: audio-text misalignment, inaccurate translation, and unnecessary speaker's name. What are the impacts of these data quality issues for model development and evaluation? In this paper, we propose an automatic method to fix or filter the above quality issues, using English-German (En-De) translation as an example. Our experiments show that ST models perform better on clean test sets, and the rank of proposed models remains consistent across different test sets. Besides, simply removing misaligned data points from the training set does not lead to a better ST model.