Abstract:Automatic indoor layout generation has attracted increasing attention due to its potential in interior design, virtual environment construction, and embodied AI. Existing methods fall into two categories: prompt-driven approaches that leverage proprietary LLM services (e.g., GPT APIs) and learning-based methods trained on layout data upon diffusion-based models. Prompt-driven methods often suffer from spatial inconsistency and high computational costs, while learning-based methods are typically constrained by coarse relational graphs and limited datasets, restricting their generalization to diverse room categories. In this paper, we revisit LLM-based indoor layout generation and present 3D-SynthPlace, a large-scale dataset that combines synthetic layouts generated via a 'GPT synthesize, Human inspect' pipeline, upgraded from the 3D-Front dataset. 3D-SynthPlace contains nearly 17,000 scenes, covering four common room types -- bedroom, living room, kitchen, and bathroom -- enriched with diverse objects and high-level spatial annotations. We further introduce OptiScene, a strong open-source LLM optimized for indoor layout generation, fine-tuned based on our 3D-SynthPlace dataset through our two-stage training. For the warum-up stage I, we adopt supervised fine-tuning (SFT), which is taught to first generate high-level spatial descriptions then conditionally predict concrete object placements. For the reinforcing stage II, to better align the generated layouts with human design preferences, we apply multi-turn direct preference optimization (DPO), which significantly improving layout quality and generation success rates. Extensive experiments demonstrate that OptiScene outperforms traditional prompt-driven and learning-based baselines. Moreover, OptiScene shows promising potential in interactive tasks such as scene editing and robot navigation.
Abstract:As Large Language Models (LLMs) rapidly advance, we introduce Hunyuan-TurboS, a novel large hybrid Transformer-Mamba Mixture of Experts (MoE) model. It synergistically combines Mamba's long-sequence processing efficiency with Transformer's superior contextual understanding. Hunyuan-TurboS features an adaptive long-short chain-of-thought (CoT) mechanism, dynamically switching between rapid responses for simple queries and deep "thinking" modes for complex problems, optimizing computational resources. Architecturally, this 56B activated (560B total) parameter model employs 128 layers (Mamba2, Attention, FFN) with an innovative AMF/MF block pattern. Faster Mamba2 ensures linear complexity, Grouped-Query Attention minimizes KV cache, and FFNs use an MoE structure. Pre-trained on 16T high-quality tokens, it supports a 256K context length and is the first industry-deployed large-scale Mamba model. Our comprehensive post-training strategy enhances capabilities via Supervised Fine-Tuning (3M instructions), a novel Adaptive Long-short CoT Fusion method, Multi-round Deliberation Learning for iterative improvement, and a two-stage Large-scale Reinforcement Learning process targeting STEM and general instruction-following. Evaluations show strong performance: overall top 7 rank on LMSYS Chatbot Arena with a score of 1356, outperforming leading models like Gemini-2.0-Flash-001 (1352) and o4-mini-2025-04-16 (1345). TurboS also achieves an average of 77.9% across 23 automated benchmarks. Hunyuan-TurboS balances high performance and efficiency, offering substantial capabilities at lower inference costs than many reasoning models, establishing a new paradigm for efficient large-scale pre-trained models.
Abstract:Robotic manipulation faces critical challenges in understanding spatial affordances--the "where" and "how" of object interactions--essential for complex manipulation tasks like wiping a board or stacking objects. Existing methods, including modular-based and end-to-end approaches, often lack robust spatial reasoning capabilities. Unlike recent point-based and flow-based affordance methods that focus on dense spatial representations or trajectory modeling, we propose A0, a hierarchical affordance-aware diffusion model that decomposes manipulation tasks into high-level spatial affordance understanding and low-level action execution. A0 leverages the Embodiment-Agnostic Affordance Representation, which captures object-centric spatial affordances by predicting contact points and post-contact trajectories. A0 is pre-trained on 1 million contact points data and fine-tuned on annotated trajectories, enabling generalization across platforms. Key components include Position Offset Attention for motion-aware feature extraction and a Spatial Information Aggregation Layer for precise coordinate mapping. The model's output is executed by the action execution module. Experiments on multiple robotic systems (Franka, Kinova, Realman, and Dobot) demonstrate A0's superior performance in complex tasks, showcasing its efficiency, flexibility, and real-world applicability.
Abstract:The unpaired point cloud completion task aims to complete a partial point cloud by using models trained with no ground truth. Existing unpaired point cloud completion methods are class-aware, i.e., a separate model is needed for each object class. Since they have limited generalization capabilities, these methods perform poorly in real-world scenarios when confronted with a wide range of point clouds of generic 3D objects. In this paper, we propose a novel unpaired point cloud completion framework, namely the Reference-guided Completion (RefComp) framework, which attains strong performance in both the class-aware and class-agnostic training settings. The RefComp framework transforms the unpaired completion problem into a shape translation problem, which is solved in the latent feature space of the partial point clouds. To this end, we introduce the use of partial-complete point cloud pairs, which are retrieved by using the partial point cloud to be completed as a template. These point cloud pairs are used as reference data to guide the completion process. Our RefComp framework uses a reference branch and a target branch with shared parameters for shape fusion and shape translation via a Latent Shape Fusion Module (LSFM) to enhance the structural features along the completion pipeline. Extensive experiments demonstrate that the RefComp framework achieves not only state-of-the-art performance in the class-aware training setting but also competitive results in the class-agnostic training setting on both virtual scans and real-world datasets.
Abstract:Referring video object segmentation (RVOS) aims to segment objects in videos guided by natural language descriptions. We propose FS-RVOS, a Transformer-based model with two key components: a cross-modal affinity module and an instance sequence matching strategy, which extends FS-RVOS to multi-object segmentation (FS-RVMOS). Experiments show FS-RVOS and FS-RVMOS outperform state-of-the-art methods across diverse benchmarks, demonstrating superior robustness and accuracy.
Abstract:Point tracking is becoming a powerful solver for motion estimation and video editing. Compared to classical feature matching, point tracking methods have the key advantage of robustly tracking points under complex camera motion trajectories and over extended periods. However, despite certain improvements in methodologies, current point tracking methods still struggle to track any position in video frames, especially in areas that are texture-less or weakly textured. In this work, we first introduce metrics for evaluating the texture intensity of a 3D object. Using these metrics, we classify the 3D models in ShapeNet into three levels of texture intensity and create GIFT, a challenging synthetic benchmark comprising 1800 indoor video sequences with rich annotations. Unlike existing datasets that assign ground truth points arbitrarily, GIFT precisely anchors ground truth on classified target objects, ensuring that each video corresponds to a specific texture intensity level. Furthermore, we comprehensively evaluate current methods on GIFT to assess their performance across different texture intensity levels and analyze the impact of texture on point tracking.
Abstract:As robotic technology rapidly develops, robots are being employed in an increasing number of fields. However, due to the complexity of deployment environments or the prevalence of ambiguous-condition objects, the practical application of robotics still faces many challenges, leading to frequent errors. Traditional methods and some LLM-based approaches, although improved, still require substantial human intervention and struggle with autonomous error correction in complex scenarios.In this work, we propose RoboReflect, a novel framework leveraging large vision-language models (LVLMs) to enable self-reflection and autonomous error correction in robotic grasping tasks. RoboReflect allows robots to automatically adjust their strategies based on unsuccessful attempts until successful execution is achieved.The corrected strategies are saved in a memory for future task reference.We evaluate RoboReflect through extensive testing on eight common objects prone to ambiguous conditions of three categories.Our results demonstrate that RoboReflect not only outperforms existing grasp pose estimation methods like AnyGrasp and high-level action planning techniques using GPT-4V but also significantly enhances the robot's ability to adapt and correct errors independently. These findings underscore the critical importance of autonomous selfreflection in robotic systems while effectively addressing the challenges posed by ambiguous environments.
Abstract:Large Language Models (LLMs) are prone to hallucination with non-factual or unfaithful statements, which undermines the applications in real-world scenarios. Recent researches focus on uncertainty-based hallucination detection, which utilizes the output probability of LLMs for uncertainty calculation and does not rely on external knowledge or frequent sampling from LLMs. Whereas, most approaches merely consider the uncertainty of each independent token, while the intricate semantic relations among tokens and sentences are not well studied, which limits the detection of hallucination that spans over multiple tokens and sentences in the passage. In this paper, we propose a method to enhance uncertainty modeling with semantic graph for hallucination detection. Specifically, we first construct a semantic graph that well captures the relations among entity tokens and sentences. Then, we incorporate the relations between two entities for uncertainty propagation to enhance sentence-level hallucination detection. Given that hallucination occurs due to the conflict between sentences, we further present a graph-based uncertainty calibration method that integrates the contradiction probability of the sentence with its neighbors in the semantic graph for uncertainty calculation. Extensive experiments on two datasets show the great advantages of our proposed approach. In particular, we obtain substantial improvements with 19.78% in passage-level hallucination detection.
Abstract:Video-based multimodal large language models (V-MLLMs) have shown vulnerability to adversarial examples in video-text multimodal tasks. However, the transferability of adversarial videos to unseen models--a common and practical real world scenario--remains unexplored. In this paper, we pioneer an investigation into the transferability of adversarial video samples across V-MLLMs. We find that existing adversarial attack methods face significant limitations when applied in black-box settings for V-MLLMs, which we attribute to the following shortcomings: (1) lacking generalization in perturbing video features, (2) focusing only on sparse key-frames, and (3) failing to integrate multimodal information. To address these limitations and deepen the understanding of V-MLLM vulnerabilities in black-box scenarios, we introduce the Image-to-Video MLLM (I2V-MLLM) attack. In I2V-MLLM, we utilize an image-based multimodal model (IMM) as a surrogate model to craft adversarial video samples. Multimodal interactions and temporal information are integrated to disrupt video representations within the latent space, improving adversarial transferability. In addition, a perturbation propagation technique is introduced to handle different unknown frame sampling strategies. Experimental results demonstrate that our method can generate adversarial examples that exhibit strong transferability across different V-MLLMs on multiple video-text multimodal tasks. Compared to white-box attacks on these models, our black-box attacks (using BLIP-2 as surrogate model) achieve competitive performance, with average attack success rates of 55.48% on MSVD-QA and 58.26% on MSRVTT-QA for VideoQA tasks, respectively. Our code will be released upon acceptance.
Abstract:Although mainstream unsupervised anomaly detection (AD) (including image-level classification and pixel-level segmentation)algorithms perform well in academic datasets, their performance is limited in practical application due to the ideal experimental setting of clean training data. Training with noisy data is an inevitable problem in real-world anomaly detection but is seldom discussed. This paper is the first to consider fully unsupervised industrial anomaly detection (i.e., unsupervised AD with noisy data). To solve this problem, we proposed memory-based unsupervised AD methods, SoftPatch and SoftPatch+, which efficiently denoise the data at the patch level. Noise discriminators are utilized to generate outlier scores for patch-level noise elimination before coreset construction. The scores are then stored in the memory bank to soften the anomaly detection boundary. Compared with existing methods, SoftPatch maintains a strong modeling ability of normal data and alleviates the overconfidence problem in coreset, and SoftPatch+ has more robust performance which is articularly useful in real-world industrial inspection scenarios with high levels of noise (from 10% to 40%). Comprehensive experiments conducted in diverse noise scenarios demonstrate that both SoftPatch and SoftPatch+ outperform the state-of-the-art AD methods on the MVTecAD, ViSA, and BTAD benchmarks. Furthermore, the performance of SoftPatch and SoftPatch+ is comparable to that of the noise-free methods in conventional unsupervised AD setting. The code of the proposed methods can be found at https://github.com/TencentYoutuResearch/AnomalyDetection-SoftPatch.