Abstract:Knowledge Editing (KE) has gained increasing attention, yet current KE tasks remain relatively simple. Under current evaluation frameworks, many editing methods achieve exceptionally high scores, sometimes nearing perfection. However, few studies integrate KE into real-world application scenarios (e.g., recent interest in LLM-as-agent). To support our analysis, we introduce a novel script-based benchmark -- ScEdit (Script-based Knowledge Editing Benchmark) -- which encompasses both counterfactual and temporal edits. We integrate token-level and text-level evaluation methods, comprehensively analyzing existing KE techniques. The benchmark extends traditional fact-based ("What"-type question) evaluation to action-based ("How"-type question) evaluation. We observe that all KE methods exhibit a drop in performance on established metrics and face challenges on text-level metrics, indicating a challenging task. Our benchmark is available at https://github.com/asdfo123/ScEdit.
Abstract:Large Language Models have achieved remarkable success in natural language processing tasks, with Reinforcement Learning playing a key role in adapting them to specific applications. However, obtaining ground truth answers for training LLMs in mathematical problem-solving is often challenging, costly, and sometimes unfeasible. This research delves into the utilization of format and length as surrogate signals to train LLMs for mathematical problem-solving, bypassing the need for traditional ground truth answers.Our study shows that a reward function centered on format correctness alone can yield performance improvements comparable to the standard GRPO algorithm in early phases. Recognizing the limitations of format-only rewards in the later phases, we incorporate length-based rewards. The resulting GRPO approach, leveraging format-length surrogate signals, not only matches but surpasses the performance of the standard GRPO algorithm relying on ground truth answers in certain scenarios, achieving 40.0\% accuracy on AIME2024 with a 7B base model. Through systematic exploration and experimentation, this research not only offers a practical solution for training LLMs to solve mathematical problems and reducing the dependence on extensive ground truth data collection, but also reveals the essence of why our label-free approach succeeds: base model is like an excellent student who has already mastered mathematical and logical reasoning skills, but performs poorly on the test paper, it simply needs to develop good answering habits to achieve outstanding results in exams , in other words, to unlock the capabilities it already possesses.
Abstract:Planning represents a fundamental capability of intelligent agents, requiring comprehensive environmental understanding, rigorous logical reasoning, and effective sequential decision-making. While Large Language Models (LLMs) have demonstrated remarkable performance on certain planning tasks, their broader application in this domain warrants systematic investigation. This paper presents a comprehensive review of LLM-based planning. Specifically, this survey is structured as follows: First, we establish the theoretical foundations by introducing essential definitions and categories about automated planning. Next, we provide a detailed taxonomy and analysis of contemporary LLM-based planning methodologies, categorizing them into three principal approaches: 1) External Module Augmented Methods that combine LLMs with additional components for planning, 2) Finetuning-based Methods that involve using trajectory data and feedback signals to adjust LLMs in order to improve their planning abilities, and 3) Searching-based Methods that break down complex tasks into simpler components, navigate the planning space, or enhance decoding strategies to find the best solutions. Subsequently, we systematically summarize existing evaluation frameworks, including benchmark datasets, evaluation metrics and performance comparisons between representative planning methods. Finally, we discuss the underlying mechanisms enabling LLM-based planning and outline promising research directions for this rapidly evolving field. We hope this survey will serve as a valuable resource to inspire innovation and drive progress in this field.
Abstract:Nowadays, Large Language Models (LLMs) have attracted widespread attention due to their powerful performance. However, due to the unavoidable exposure to socially biased data during training, LLMs tend to exhibit social biases, particularly gender bias. To better explore and quantifying the degree of gender bias in LLMs, we propose a pair of datasets named GenBiasEval and GenHintEval, respectively. The GenBiasEval is responsible for evaluating the degree of gender bias in LLMs, accompanied by an evaluation metric named AFGB-Score (Absolutely Fair Gender Bias Score). Meanwhile, the GenHintEval is used to assess whether LLMs can provide responses consistent with prompts that contain gender hints, along with the accompanying evaluation metric UB-Score (UnBias Score). Besides, in order to mitigate gender bias in LLMs more effectively, we present the LFTF (Locating First and Then Fine-Tuning) algorithm.The algorithm first ranks specific LLM blocks by their relevance to gender bias in descending order using a metric called BMI (Block Mitigating Importance Score). Based on this ranking, the block most strongly associated with gender bias is then fine-tuned using a carefully designed loss function. Numerous experiments have shown that our proposed LFTF algorithm can significantly mitigate gender bias in LLMs while maintaining their general capabilities.
Abstract:We present Team asdfo123's submission to the LLMSR@XLLM25 shared task, which evaluates large language models on producing fine-grained, controllable, and interpretable reasoning processes. Systems must extract all problem conditions, decompose a chain of thought into statement-evidence pairs, and verify the logical validity of each pair. Leveraging only the off-the-shelf Meta-Llama-3-8B-Instruct, we craft a concise few-shot, multi-turn prompt that first enumerates all conditions and then guides the model to label, cite, and adjudicate every reasoning step. A lightweight post-processor based on regular expressions normalises spans and enforces the official JSON schema. Without fine-tuning, external retrieval, or ensembling, our method ranks 5th overall, achieving macro F1 scores on par with substantially more complex and resource-consuming pipelines. We conclude by analysing the strengths and limitations of our approach and outlining directions for future research in structural reasoning with LLMs. Our code is available at https://github.com/asdfo123/LLMSR-asdfo123.
Abstract:The rapid advancement of large language models (LLMs) has accelerated their application in reasoning, with strategic reasoning drawing increasing attention. To evaluate LLMs' strategic reasoning capabilities, game theory, with its concise structure, has become a preferred approach. However, current research focuses on a limited selection of games, resulting in low coverage. Classic game scenarios risk data leakage, and existing benchmarks often lack extensibility, making them inadequate for evaluating state-of-the-art models. To address these challenges, we propose TMGBench, a benchmark with comprehensive game type coverage, novel scenarios, and flexible organization. Specifically, we incorporate all 144 game types summarized by the Robinson-Goforth topology of 2x2 games, constructed as classic games. We also employ synthetic data generation to create diverse, higher-quality scenarios through topic guidance and human inspection, referred to as story-based games. Lastly, we provide a sustainable framework for increasingly powerful LLMs by treating these games as atomic units and organizing them into more complex forms via sequential, parallel, and nested structures. Our comprehensive evaluation of mainstream LLMs covers tests on rational reasoning, robustness, Theory-of-Mind (ToM), and reasoning in complex forms. Results reveal flaws in accuracy, consistency, and varying mastery of ToM. Additionally, o1-mini, OpenAI's latest reasoning model, achieved accuracy rates of 66.6%, 60.0%, and 70.0% on sequential, parallel, and nested games, highlighting TMGBench's challenges.
Abstract:Large Language Model (LLM) services exhibit impressive capability on unlearned tasks leveraging only a few examples by in-context learning (ICL). However, the success of ICL varies depending on the task and context, leading to heterogeneous service quality. Directly estimating the performance of LLM services at each invocation can be laborious, especially requiring abundant labeled data or internal information within the LLM. This paper introduces a novel method to estimate the performance of LLM services across different tasks and contexts, which can be "plug-and-play" utilizing only a few unlabeled samples like ICL. Our findings suggest that the negative log-likelihood and perplexity derived from LLM service invocation can function as effective and significant features. Based on these features, we utilize four distinct meta-models to estimate the performance of LLM services. Our proposed method is compared against unlabeled estimation baselines across multiple LLM services and tasks. And it is experimentally applied to two scenarios, demonstrating its effectiveness in the selection and further optimization of LLM services.
Abstract:In recent years, with the maturation of large language model (LLM) technology and the emergence of high-quality programming code datasets, researchers have become increasingly confident in addressing the challenges of program synthesis automatically. However, since most of the training samples for LLMs are unscreened, it is inevitable that LLMs' performance may not align with real-world scenarios, leading to the presence of social bias. To evaluate and quantify the gender bias in code LLMs, we propose a dataset named CodeGenBias (Gender Bias in the Code Generation) and an evaluation metric called FB-Score (Factual Bias Score) based on the actual gender distribution of correlative professions. With the help of CodeGenBias and FB-Score, we evaluate and analyze the gender bias in eight mainstream Code LLMs. Previous work has demonstrated that model editing methods that perform well in knowledge editing have the potential to mitigate social bias in LLMs. Therefore, we develop a model editing approach named MG-Editing (Multi-Granularity model Editing), which includes the locating and editing phases. Our model editing method MG-Editing can be applied at five different levels of model parameter granularity: full parameters level, layer level, module level, row level, and neuron level. Extensive experiments not only demonstrate that our MG-Editing can effectively mitigate the gender bias in code LLMs while maintaining their general code generation capabilities, but also showcase its excellent generalization. At the same time, the experimental results show that, considering both the gender bias of the model and its general code generation capability, MG-Editing is most effective when applied at the row and neuron levels of granularity.
Abstract:The unique diagnosis and treatment techniques and remarkable clinical efficacy of traditional Chinese medicine (TCM) make it play an important role in the field of elderly care and healthcare, especially in the rehabilitation of some common chronic diseases of the elderly. Therefore, building a TCM chatbot for healthcare application will help users obtain consultation services in a direct and natural way. However, concepts such as acupuncture points (acupoints) and meridians involved in TCM always appear in the consultation, which cannot be displayed intuitively. To this end, we develop a \textbf{h}ealthcare chat\textbf{bot} (HBot) based on a human body model in 3D and knowledge graph, which provides conversational services such as knowledge Q\&A, prescription recommendation, moxibustion therapy recommendation, and acupoint search. When specific acupoints are involved in the conversations between user and HBot, the 3D body will jump to the corresponding acupoints and highlight them. Moreover, Hbot can also be used in training scenarios to accelerate the teaching process of TCM by intuitively displaying acupuncture points and knowledge cards. The demonstration video is available at https://www.youtube.com/watch?v=UhQhutSKkTU . Our code and dataset are publicly available at Gitee: https://gitee.com/plabrolin/interactive-3d-acup.git
Abstract:Large Language Models (LLMs) trained on extensive corpora inevitably retain sensitive data, such as personal privacy information and copyrighted material. Recent advancements in knowledge unlearning involve updating LLM parameters to erase specific knowledge. However, current unlearning paradigms are mired in vague forgetting boundaries, often erasing knowledge indiscriminately. In this work, we introduce KnowUnDo, a benchmark containing copyrighted content and user privacy domains to evaluate if the unlearning process inadvertently erases essential knowledge. Our findings indicate that existing unlearning methods often suffer from excessive unlearning. To address this, we propose a simple yet effective method, MemFlex, which utilizes gradient information to precisely target and unlearn sensitive parameters. Experimental results show that MemFlex is superior to existing methods in both precise knowledge unlearning and general knowledge retaining of LLMs. Code and dataset will be released at https://github.com/zjunlp/KnowUnDo.