Alert button
Picture for Chengjie Wang

Chengjie Wang

Alert button

Dynamic Frame Interpolation in Wavelet Domain

Sep 21, 2023
Lingtong Kong, Boyuan Jiang, Donghao Luo, Wenqing Chu, Ying Tai, Chengjie Wang, Jie Yang

Video frame interpolation is an important low-level vision task, which can increase frame rate for more fluent visual experience. Existing methods have achieved great success by employing advanced motion models and synthesis networks. However, the spatial redundancy when synthesizing the target frame has not been fully explored, that can result in lots of inefficient computation. On the other hand, the computation compression degree in frame interpolation is highly dependent on both texture distribution and scene motion, which demands to understand the spatial-temporal information of each input frame pair for a better compression degree selection. In this work, we propose a novel two-stage frame interpolation framework termed WaveletVFI to address above problems. It first estimates intermediate optical flow with a lightweight motion perception network, and then a wavelet synthesis network uses flow aligned context features to predict multi-scale wavelet coefficients with sparse convolution for efficient target frame reconstruction, where the sparse valid masks that control computation in each scale are determined by a crucial threshold ratio. Instead of setting a fixed value like previous methods, we find that embedding a classifier in the motion perception network to learn a dynamic threshold for each sample can achieve more computation reduction with almost no loss of accuracy. On the common high resolution and animation frame interpolation benchmarks, proposed WaveletVFI can reduce computation up to 40% while maintaining similar accuracy, making it perform more efficiently against other state-of-the-arts. Code is available at

* Accepted by IEEE TIP 
Viaarxiv icon

Phasic Content Fusing Diffusion Model with Directional Distribution Consistency for Few-Shot Model Adaption

Sep 07, 2023
Teng Hu, Jiangning Zhang, Liang Liu, Ran Yi, Siqi Kou, Haokun Zhu, Xu Chen, Yabiao Wang, Chengjie Wang, Lizhuang Ma

Training a generative model with limited number of samples is a challenging task. Current methods primarily rely on few-shot model adaption to train the network. However, in scenarios where data is extremely limited (less than 10), the generative network tends to overfit and suffers from content degradation. To address these problems, we propose a novel phasic content fusing few-shot diffusion model with directional distribution consistency loss, which targets different learning objectives at distinct training stages of the diffusion model. Specifically, we design a phasic training strategy with phasic content fusion to help our model learn content and style information when t is large, and learn local details of target domain when t is small, leading to an improvement in the capture of content, style and local details. Furthermore, we introduce a novel directional distribution consistency loss that ensures the consistency between the generated and source distributions more efficiently and stably than the prior methods, preventing our model from overfitting. Finally, we propose a cross-domain structure guidance strategy that enhances structure consistency during domain adaptation. Theoretical analysis, qualitative and quantitative experiments demonstrate the superiority of our approach in few-shot generative model adaption tasks compared to state-of-the-art methods. The source code is available at:

* Accepted by ICCV 2023 
Viaarxiv icon

Toward High Quality Facial Representation Learning

Sep 07, 2023
Yue Wang, Jinlong Peng, Jiangning Zhang, Ran Yi, Liang Liu, Yabiao Wang, Chengjie Wang

Face analysis tasks have a wide range of applications, but the universal facial representation has only been explored in a few works. In this paper, we explore high-performance pre-training methods to boost the face analysis tasks such as face alignment and face parsing. We propose a self-supervised pre-training framework, called \textbf{\it Mask Contrastive Face (MCF)}, with mask image modeling and a contrastive strategy specially adjusted for face domain tasks. To improve the facial representation quality, we use feature map of a pre-trained visual backbone as a supervision item and use a partially pre-trained decoder for mask image modeling. To handle the face identity during the pre-training stage, we further use random masks to build contrastive learning pairs. We conduct the pre-training on the LAION-FACE-cropped dataset, a variants of LAION-FACE 20M, which contains more than 20 million face images from Internet websites. For efficiency pre-training, we explore our framework pre-training performance on a small part of LAION-FACE-cropped and verify the superiority with different pre-training settings. Our model pre-trained with the full pre-training dataset outperforms the state-of-the-art methods on multiple downstream tasks. Our model achieves 0.932 NME$_{diag}$ for AFLW-19 face alignment and 93.96 F1 score for LaPa face parsing. Code is available at

* ACM MM 2023 
Viaarxiv icon

Stroke-based Neural Painting and Stylization with Dynamically Predicted Painting Region

Sep 07, 2023
Teng Hu, Ran Yi, Haokun Zhu, Liang Liu, Jinlong Peng, Yabiao Wang, Chengjie Wang, Lizhuang Ma

Stroke-based rendering aims to recreate an image with a set of strokes. Most existing methods render complex images using an uniform-block-dividing strategy, which leads to boundary inconsistency artifacts. To solve the problem, we propose Compositional Neural Painter, a novel stroke-based rendering framework which dynamically predicts the next painting region based on the current canvas, instead of dividing the image plane uniformly into painting regions. We start from an empty canvas and divide the painting process into several steps. At each step, a compositor network trained with a phasic RL strategy first predicts the next painting region, then a painter network trained with a WGAN discriminator predicts stroke parameters, and a stroke renderer paints the strokes onto the painting region of the current canvas. Moreover, we extend our method to stroke-based style transfer with a novel differentiable distance transform loss, which helps preserve the structure of the input image during stroke-based stylization. Extensive experiments show our model outperforms the existing models in both stroke-based neural painting and stroke-based stylization. Code is available at

* ACM MM 2023 
Viaarxiv icon

Semi-supervised Domain Adaptation with Inter and Intra-domain Mixing for Semantic Segmentation

Aug 30, 2023
Weifu Fu, Qiang Nie, Jialin Li, Yuhuan Lin, Kai Wu, Yong Liu, Chengjie Wang

Despite recent advances in semantic segmentation, an inevitable challenge is the performance degradation caused by the domain shift in real application. Current dominant approach to solve this problem is unsupervised domain adaptation (UDA). However, the absence of labeled target data in UDA is overly restrictive and limits performance. To overcome this limitation, a more practical scenario called semi-supervised domain adaptation (SSDA) has been proposed. Existing SSDA methods are derived from the UDA paradigm and primarily focus on leveraging the unlabeled target data and source data. In this paper, we highlight the significance of exploiting the intra-domain information between the limited labeled target data and unlabeled target data, as it greatly benefits domain adaptation. Instead of solely using the scarce labeled data for supervision, we propose a novel SSDA framework that incorporates both inter-domain mixing and intra-domain mixing, where inter-domain mixing mitigates the source-target domain gap and intra-domain mixing enriches the available target domain information. By simultaneously learning from inter-domain mixing and intra-domain mixing, the network can capture more domain-invariant features and promote its performance on the target domain. We also explore different domain mixing operations to better exploit the target domain information. Comprehensive experiments conducted on the GTA5toCityscapes and SYNTHIA2Cityscapes benchmarks demonstrate the effectiveness of our method, surpassing previous methods by a large margin.

* 7 pages, 4 figures 
Viaarxiv icon

A Unified Framework for 3D Point Cloud Visual Grounding

Aug 23, 2023
Haojia Lin, Yongdong Luo, Xiawu Zheng, Lijiang Li, Fei Chao, Taisong Jin, Donghao Luo, Chengjie Wang, Yan Wang, Liujuan Cao

Figure 1 for A Unified Framework for 3D Point Cloud Visual Grounding
Figure 2 for A Unified Framework for 3D Point Cloud Visual Grounding
Figure 3 for A Unified Framework for 3D Point Cloud Visual Grounding
Figure 4 for A Unified Framework for 3D Point Cloud Visual Grounding

3D point cloud visual grounding plays a critical role in 3D scene comprehension, encompassing 3D referring expression comprehension (3DREC) and segmentation (3DRES). We argue that 3DREC and 3DRES should be unified in one framework, which is also a natural progression in the community. To explain, 3DREC can help 3DRES locate the referent, while 3DRES can also facilitate 3DREC via more finegrained language-visual alignment. To achieve this, this paper takes the initiative step to integrate 3DREC and 3DRES into a unified framework, termed 3D Referring Transformer (3DRefTR). Its key idea is to build upon a mature 3DREC model and leverage ready query embeddings and visual tokens from the 3DREC model to construct a dedicated mask branch. Specially, we propose Superpoint Mask Branch, which serves a dual purpose: i) By leveraging the heterogeneous CPU-GPU parallelism, while the GPU is occupied generating visual tokens, the CPU concurrently produces superpoints, equivalently accomplishing the upsampling computation; ii) By harnessing on the inherent association between the superpoints and point cloud, it eliminates the heavy computational overhead on the high-resolution visual features for upsampling. This elegant design enables 3DRefTR to achieve both well-performing 3DRES and 3DREC capacities with only a 6% additional latency compared to the original 3DREC model. Empirical evaluations affirm the superiority of 3DRefTR. Specifically, on the ScanRefer dataset, 3DRefTR surpasses the state-of-the-art 3DRES method by 12.43% in mIoU and improves upon the SOTA 3DREC method by 0.6% Acc@0.25IoU.

Viaarxiv icon

PVG: Progressive Vision Graph for Vision Recognition

Aug 01, 2023
Jiafu Wu, Jian Li, Jiangning Zhang, Boshen Zhang, Mingmin Chi, Yabiao Wang, Chengjie Wang

Figure 1 for PVG: Progressive Vision Graph for Vision Recognition
Figure 2 for PVG: Progressive Vision Graph for Vision Recognition
Figure 3 for PVG: Progressive Vision Graph for Vision Recognition
Figure 4 for PVG: Progressive Vision Graph for Vision Recognition

Convolution-based and Transformer-based vision backbone networks process images into the grid or sequence structures, respectively, which are inflexible for capturing irregular objects. Though Vision GNN (ViG) adopts graph-level features for complex images, it has some issues, such as inaccurate neighbor node selection, expensive node information aggregation calculation, and over-smoothing in the deep layers. To address the above problems, we propose a Progressive Vision Graph (PVG) architecture for vision recognition task. Compared with previous works, PVG contains three main components: 1) Progressively Separated Graph Construction (PSGC) to introduce second-order similarity by gradually increasing the channel of the global graph branch and decreasing the channel of local branch as the layer deepens; 2) Neighbor nodes information aggregation and update module by using Max pooling and mathematical Expectation (MaxE) to aggregate rich neighbor information; 3) Graph error Linear Unit (GraphLU) to enhance low-value information in a relaxed form to reduce the compression of image detail information for alleviating the over-smoothing. Extensive experiments on mainstream benchmarks demonstrate the superiority of PVG over state-of-the-art methods, e.g., our PVG-S obtains 83.0% Top-1 accuracy on ImageNet-1K that surpasses GNN-based ViG-S by +0.9 with the parameters reduced by 18.5%, while the largest PVG-B obtains 84.2% that has +0.5 improvement than ViG-B. Furthermore, our PVG-S obtains +1.3 box AP and +0.4 mask AP gains than ViG-S on COCO dataset.

* ACM International Conference on Multimedia 2023  
* Accepted by ACM MM 2023 
Viaarxiv icon

Transferable Decoding with Visual Entities for Zero-Shot Image Captioning

Jul 31, 2023
Junjie Fei, Teng Wang, Jinrui Zhang, Zhenyu He, Chengjie Wang, Feng Zheng

Figure 1 for Transferable Decoding with Visual Entities for Zero-Shot Image Captioning
Figure 2 for Transferable Decoding with Visual Entities for Zero-Shot Image Captioning
Figure 3 for Transferable Decoding with Visual Entities for Zero-Shot Image Captioning
Figure 4 for Transferable Decoding with Visual Entities for Zero-Shot Image Captioning

Image-to-text generation aims to describe images using natural language. Recently, zero-shot image captioning based on pre-trained vision-language models (VLMs) and large language models (LLMs) has made significant progress. However, we have observed and empirically demonstrated that these methods are susceptible to modality bias induced by LLMs and tend to generate descriptions containing objects (entities) that do not actually exist in the image but frequently appear during training (i.e., object hallucination). In this paper, we propose ViECap, a transferable decoding model that leverages entity-aware decoding to generate descriptions in both seen and unseen scenarios. ViECap incorporates entity-aware hard prompts to guide LLMs' attention toward the visual entities present in the image, enabling coherent caption generation across diverse scenes. With entity-aware hard prompts, ViECap is capable of maintaining performance when transferring from in-domain to out-of-domain scenarios. Extensive experiments demonstrate that ViECap sets a new state-of-the-art cross-domain (transferable) captioning and performs competitively in-domain captioning compared to previous VLMs-based zero-shot methods. Our code is available at:

* Accepted by ICCV 2023 
Viaarxiv icon

RFENet: Towards Reciprocal Feature Evolution for Glass Segmentation

Jul 12, 2023
Ke Fan, Changan Wang, Yabiao Wang, Chengjie Wang, Ran Yi, Lizhuang Ma

Figure 1 for RFENet: Towards Reciprocal Feature Evolution for Glass Segmentation
Figure 2 for RFENet: Towards Reciprocal Feature Evolution for Glass Segmentation
Figure 3 for RFENet: Towards Reciprocal Feature Evolution for Glass Segmentation
Figure 4 for RFENet: Towards Reciprocal Feature Evolution for Glass Segmentation

Glass-like objects are widespread in daily life but remain intractable to be segmented for most existing methods. The transparent property makes it difficult to be distinguished from background, while the tiny separation boundary further impedes the acquisition of their exact contour. In this paper, by revealing the key co-evolution demand of semantic and boundary learning, we propose a Selective Mutual Evolution (SME) module to enable the reciprocal feature learning between them. Then to exploit the global shape context, we propose a Structurally Attentive Refinement (SAR) module to conduct a fine-grained feature refinement for those ambiguous points around the boundary. Finally, to further utilize the multi-scale representation, we integrate the above two modules into a cascaded structure and then introduce a Reciprocal Feature Evolution Network (RFENet) for effective glass-like object segmentation. Extensive experiments demonstrate that our RFENet achieves state-of-the-art performance on three popular public datasets.

* Accepted by 2023 International Joint Conference on Artificial Intelligence (IJCAI2023) 
Viaarxiv icon