Large language models (LLMs) have demonstrated remarkable performance on a variety of natural language tasks based on just a few examples of natural language instructions, reducing the need for extensive feature engineering. However, most powerful LLMs are closed-source or limited in their capability for languages other than English. In this technical report, we present Baichuan 2, a series of large-scale multilingual language models containing 7 billion and 13 billion parameters, trained from scratch, on 2.6 trillion tokens. Baichuan 2 matches or outperforms other open-source models of similar size on public benchmarks like MMLU, CMMLU, GSM8K, and HumanEval. Furthermore, Baichuan 2 excels in vertical domains such as medicine and law. We will release all pre-training model checkpoints to benefit the research community in better understanding the training dynamics of Baichuan 2.
In light of the success of the pre-trained language models (PLMs), continual pre-training of generic PLMs has been the paradigm of domain adaption. In this paper, we propose QUERT, A Continual Pre-trained Language Model for QUERy Understanding in Travel Domain Search. QUERT is jointly trained on four tailored pre-training tasks to the characteristics of query in travel domain search: Geography-aware Mask Prediction, Geohash Code Prediction, User Click Behavior Learning, and Phrase and Token Order Prediction. Performance improvement of downstream tasks and ablation experiment demonstrate the effectiveness of our proposed pre-training tasks. To be specific, the average performance of downstream tasks increases by 2.02% and 30.93% in supervised and unsupervised settings, respectively. To check on the improvement of QUERT to online business, we deploy QUERT and perform A/B testing on Fliggy APP. The feedback results show that QUERT increases the Unique Click-Through Rate and Page Click-Through Rate by 0.89% and 1.03% when applying QUERT as the encoder. Our code and downstream task data will be released for future research.
By providing external information to large language models (LLMs), tool augmentation (including retrieval augmentation) has emerged as a promising solution for addressing the limitations of LLMs' static parametric memory. However, how receptive are LLMs to such external evidence, especially when the evidence conflicts with their parametric memory? We present the first comprehensive and controlled investigation into the behavior of LLMs when encountering knowledge conflicts. We propose a systematic framework to elicit high-quality parametric memory from LLMs and construct the corresponding counter-memory, which enables us to conduct a series of controlled experiments. Our investigation reveals seemingly contradicting behaviors of LLMs. On the one hand, different from prior wisdom, we find that LLMs can be highly receptive to external evidence even when that conflicts with their parametric memory, given that the external evidence is coherent and convincing. On the other hand, LLMs also demonstrate a strong confirmation bias when the external evidence contains some information that is consistent with their parametric memory, despite being presented with conflicting evidence at the same time. These results pose important implications that are worth careful consideration for the further development and deployment of tool- and retrieval-augmented LLMs.
In task-oriented dialogue systems, Dialogue State Tracking (DST) aims to extract users' intentions from the dialogue history. Currently, most existing approaches suffer from error propagation and are unable to dynamically select relevant information when utilizing previous dialogue states. Moreover, the relations between the updates of different slots provide vital clues for DST. However, the existing approaches rely only on predefined graphs to indirectly capture the relations. In this paper, we propose a Dialogue State Distillation Network (DSDN) to utilize relevant information of previous dialogue states and migrate the gap of utilization between training and testing. Thus, it can dynamically exploit previous dialogue states and avoid introducing error propagation simultaneously. Further, we propose an inter-slot contrastive learning loss to effectively capture the slot co-update relations from dialogue context. Experiments are conducted on the widely used MultiWOZ 2.0 and MultiWOZ 2.1 datasets. The experimental results show that our proposed model achieves the state-of-the-art performance for DST.
Task-oriented dialogue systems have been plagued by the difficulties of obtaining large-scale and high-quality annotated conversations. Furthermore, most of the publicly available datasets only include written conversations, which are insufficient to reflect actual human behaviors in practical spoken dialogue systems. In this paper, we propose Task-oriented Dialogue Data Augmentation (TOD-DA), a novel model-agnostic data augmentation paradigm to boost the robustness of task-oriented dialogue modeling on spoken conversations. The TOD-DA consists of two modules: 1) Dialogue Enrichment to expand training data on task-oriented conversations for easing data sparsity and 2) Spoken Conversation Simulator to imitate oral style expressions and speech recognition errors in diverse granularities for bridging the gap between written and spoken conversations. With such designs, our approach ranked first in both tasks of DSTC10 Track2, a benchmark for task-oriented dialogue modeling on spoken conversations, demonstrating the superiority and effectiveness of our proposed TOD-DA.
Slot filling and intent detection are two main tasks in spoken language understanding (SLU) system. In this paper, we propose a novel non-autoregressive model named SlotRefine for joint intent detection and slot filling. Besides, we design a novel two-pass iteration mechanism to handle the uncoordinated slots problem caused by conditional independence of non-autoregressive model. Experiments demonstrate that our model significantly outperforms previous models in slot filling task, while considerably speeding up the decoding (up to X 10.77). In-depth analyses show that 1) pretraining schemes could further enhance our model; 2) two-pass mechanism indeed remedy the uncoordinated slots.
In this paper, we present Shift Convolution Network (ShiftConvNet) to provide matching capability between two feature maps for stereo estimation. The proposed method can speedily produce a highly accurate disparity map from stereo images. A module called shift convolution layer is proposed to replace the traditional correlation layer to perform patch comparisons between two feature maps. By using a novel architecture of convolutional network to learn the matching process, ShiftConvNet can produce better results than DispNet-C[1], also running faster with 5 fps. Moreover, with a proposed auto shift convolution refine part, further improvement is obtained. The proposed approach was evaluated on FlyingThings 3D. It achieves state-of-the-art results on the benchmark dataset. Codes will be made available at github.