Carnegie Mellon University
Abstract:Learning-based methods have dominated the 3D human pose estimation (HPE) tasks with significantly better performance in most benchmarks than traditional optimization-based methods. Nonetheless, 3D HPE in the wild is still the biggest challenge of learning-based models, whether with 2D-3D lifting, image-to-3D, or diffusion-based methods, since the trained networks implicitly learn camera intrinsic parameters and domain-based 3D human pose distributions and estimate poses by statistical average. On the other hand, the optimization-based methods estimate results case-by-case, which can predict more diverse and sophisticated human poses in the wild. By combining the advantages of optimization-based and learning-based methods, we propose the Zero-shot Diffusion-based Optimization (ZeDO) pipeline for 3D HPE to solve the problem of cross-domain and in-the-wild 3D HPE. Our multi-hypothesis ZeDO achieves state-of-the-art (SOTA) performance on Human3.6M as minMPJPE $51.4$mm without training with any 2D-3D or image-3D pairs. Moreover, our single-hypothesis ZeDO achieves SOTA performance on 3DPW dataset with PA-MPJPE $42.6$mm on cross-dataset evaluation, which even outperforms learning-based methods trained on 3DPW.
Abstract:As AI-generated text increasingly resembles human-written content, the ability to detect machine-generated text becomes crucial. To address this challenge, we present GPTWatermark, a robust and high-quality solution designed to ascertain whether a piece of text originates from a specific model. Our approach extends existing watermarking strategies and employs a fixed group design to enhance robustness against editing and paraphrasing attacks. We show that our watermarked language model enjoys strong provable guarantees on generation quality, correctness in detection, and security against evasion attacks. Experimental results on various large language models (LLMs) and diverse datasets demonstrate that our method achieves superior detection accuracy and comparable generation quality in perplexity, thus promoting the responsible use of LLMs.
Abstract:Multi-vehicle pursuit (MVP) such as autonomous police vehicles pursuing suspects is important but very challenging due to its mission and safety critical nature. While multi-agent reinforcement learning (MARL) algorithms have been proposed for MVP problem in structured grid-pattern roads, the existing algorithms use randomly training samples in centralized learning, which leads to homogeneous agents showing low collaboration performance. For the more challenging problem of pursuing multiple evading vehicles, these algorithms typically select a fixed target evading vehicle for pursuing vehicles without considering dynamic traffic situation, which significantly reduces pursuing success rate. To address the above problems, this paper proposes a Progression Cognition Reinforcement Learning with Prioritized Experience for MVP (PEPCRL-MVP) in urban multi-intersection dynamic traffic scenes. PEPCRL-MVP uses a prioritization network to assess the transitions in the global experience replay buffer according to the parameters of each MARL agent. With the personalized and prioritized experience set selected via the prioritization network, diversity is introduced to the learning process of MARL, which can improve collaboration and task related performance. Furthermore, PEPCRL-MVP employs an attention module to extract critical features from complex urban traffic environments. These features are used to develop progression cognition method to adaptively group pursuing vehicles. Each group efficiently target one evading vehicle in dynamic driving environments. Extensive experiments conducted with a simulator over unstructured roads of an urban area show that PEPCRL-MVP is superior to other state-of-the-art methods. Specifically, PEPCRL-MVP improves pursuing efficiency by 3.95% over TD3-DMAP and its success rate is 34.78% higher than that of MADDPG. Codes are open sourced.
Abstract:Instruction tuning has significantly advanced large language models (LLMs) such as ChatGPT, enabling them to align with human instructions across diverse tasks. However, progress in open vision-language models (VLMs) has been limited due to the scarcity of high-quality instruction datasets. To tackle this challenge and promote research in the vision-language field, we introduce the Multi-Modal, Multilingual Instruction Tuning (M$^3$IT) dataset, designed to optimize VLM alignment with human instructions. Our M$^3$IT dataset comprises 40 carefully curated datasets, including 2.4 million instances and 400 manually written task instructions, reformatted into a vision-to-text structure. Key tasks are translated into 80 languages with an advanced translation system, ensuring broader accessibility. M$^3$IT surpasses previous datasets regarding task coverage, instruction number and instance scale. Moreover, we develop Ying-VLM, a VLM model trained on our M$^3$IT dataset, showcasing its potential to answer complex questions requiring world knowledge, generalize to unseen video tasks, and comprehend unseen instructions in Chinese. We have open-sourced the dataset to encourage further research.
Abstract:Invisible watermarks safeguard images' copyrights by embedding hidden messages detectable by owners. It also prevents people from misusing images, especially those generated by AI models. Malicious adversaries can violate these rights by removing the watermarks. In order to remove watermarks without damaging the visual quality, the adversary needs to erase them while retaining the essential information in the image. This is analogous to the encoding and decoding process of generative autoencoders, especially variational autoencoders (VAEs) and diffusion models. We propose a framework using generative autoencoders to remove invisible watermarks and test it using VAEs and diffusions. Our results reveal that, even without specific training, off-the-shelf Stable Diffusion effectively removes most watermarks, surpassing all current attackers. The result underscores the vulnerabilities in existing watermarking schemes and calls for more robust methods for copyright protection.
Abstract:We uncover a systematic bias in the evaluation paradigm of adopting large language models~(LLMs), e.g., GPT-4, as a referee to score the quality of responses generated by candidate models. We find that the quality ranking of candidate responses can be easily hacked by simply altering their order of appearance in the context. This manipulation allows us to skew the evaluation result, making one model appear considerably superior to the other, e.g., vicuna could beat ChatGPT on 66 over 80 tested queries. To address this issue, we propose two simple yet effective calibration strategies: 1) Multiple Evidence Calibration, which requires the evaluator model to generate multiple detailed pieces of evidence before assigning ratings; 2) Balanced Position Calibration, which aggregates results across various orders to determine the final score. Extensive experiments demonstrate that our approach successfully mitigates evaluation bias, resulting in closer alignment with human judgments. To facilitate future research on more robust large language model comparison, we integrate the techniques in the paper into an easy-to-use toolkit \emph{FairEval}, along with the human annotations.\footnote{\url{https://github.com/i-Eval/FairEval}}
Abstract:Existing wisdom demonstrates the significance of syntactic knowledge for the improvement of neural machine translation models. However, most previous works merely focus on leveraging the source syntax in the well-known encoder-decoder framework. In sharp contrast, this paper proposes an end-to-end translation architecture from the (graph \& sequence) structural inputs to the (graph \& sequence) outputs, where the target translation and its corresponding syntactic graph are jointly modeled and generated. We propose a customized Dynamic Spatial-Temporal Graph Convolutional Decoder (Dyn-STGCD), which is designed for consuming source feature representations and their syntactic graph, and auto-regressively generating the target syntactic graph and tokens simultaneously. We conduct extensive experiments on five widely acknowledged translation benchmarks, verifying that our proposal achieves consistent improvements over baselines and other syntax-aware variants.
Abstract:Large language models (LLMs) excel at implementing code from functionality descriptions, but struggle with algorithmic problems that require not only implementation but also identification of the suitable algorithm. Moreover, LLM-generated programs lack guaranteed correctness and require human verification. To address these challenges, we propose ALGO, a framework that synthesizes Algorithmic programs with LLM-Generated Oracles to guide the creation and verify their correctness. ALGO first generates a probably correct but possibly slow reference oracle by prompting an LLM to exhaustively enumerate all the combinations of relevant variables. This oracle is then utilized to guide an arbitrary search strategy in exploring the algorithm space and to verify the algorithms synthesized. Our study shows that the LLM-generated oracles are correct for 88% of the cases. With the oracles as verifiers, ALGO can be integrated with any existing code generation model in a model-agnostic manner to enhance its performance. Experiments show that when equipped with ALGO, we achieve an 8x better one-submission pass rate over the Codex model and a 2.6x better one-submission pass rate over CodeT, the current state-of-the-art model on CodeContests. We can also get 1.3x better pass rate over the ChatGPT Code Interpreter on unseen problems.
Abstract:Large language models (LLMs) have demonstrated remarkable language proficiency, but they face challenges when solving interactive tasks independently. Existing methods either rely on gradient access, which is often inaccessible in state-of-the-art LLMs like GPT-4, or necessitate diverse and high-quality in-context demonstrations. In this study, we propose LLM-PO, a novel approach that enables LLMs to address these tasks without gradient access or extensive demonstrations. The key idea is to maintain a text-based plan and ask LLMs to reflect on pros and cons of the current plan based on experience collected with it, to update the plan, and to collect more experiences with the new plan. Experiments on HotpotQA demonstrate that LLM-PO achieves higher or on par success rates compared to in-context learning (ICL) baselines while requiring less inference cost.
Abstract:Recently, Pretrained Language Models (PLMs) have been serving as general-purpose interfaces, posing a significant demand for comprehensive visual knowledge. However, it remains unclear how well current PLMs and their visually augmented counterparts (VaLMs) can master visual commonsense knowledge. To investigate this, we propose ImageNetVC, a fine-grained, human-annotated dataset specifically designed for zero-shot visual commonsense evaluation across 1,000 ImageNet categories. Utilizing ImageNetVC, we delve into the fundamental visual commonsense knowledge of both unimodal PLMs and VaLMs, uncovering the scaling law and the influence of the backbone model on VaLMs. Furthermore, we investigate the factors affecting the visual commonsense knowledge of large-scale models, providing insights into the development of language models enriched with visual commonsense knowledge. Our code and dataset are available at https://github.com/hemingkx/ImageNetVC.