Abstract:Knowledge distillation typically employs the Kullback-Leibler (KL) divergence to constrain the student model's output to match the soft labels provided by the teacher model exactly. However, sometimes the optimization direction of the KL divergence loss is not always aligned with the task loss, where a smaller KL divergence could lead to erroneous predictions that diverge from the soft labels. This limitation often results in suboptimal optimization for the student. Moreover, even under temperature scaling, the KL divergence loss function tends to overly focus on the larger-valued channels in the logits, disregarding the rich inter-class information provided by the multitude of smaller-valued channels. This hard constraint proves too challenging for lightweight students, hindering further knowledge distillation. To address this issue, we propose a plug-and-play ranking loss based on Kendall's $\tau$ coefficient, called Rank-Kendall Knowledge Distillation (RKKD). RKKD balances the attention to smaller-valued channels by constraining the order of channel values in student logits, providing more inter-class relational information. The rank constraint on the top-valued channels helps avoid suboptimal traps during optimization. We also discuss different differentiable forms of Kendall's $\tau$ coefficient and demonstrate that the proposed ranking loss function shares a consistent optimization objective with the KL divergence. Extensive experiments on the CIFAR-100 and ImageNet datasets show that our RKKD can enhance the performance of various knowledge distillation baselines and offer broad improvements across multiple teacher-student architecture combinations.
Abstract:Recently, text-guided image editing has achieved significant success. However, existing methods can only apply simple textures like wood or gold when changing the texture of an object. Complex textures such as cloud or fire pose a challenge. This limitation stems from that the target prompt needs to contain both the input image content and <texture>, restricting the texture representation. In this paper, we propose TextureDiffusion, a tuning-free image editing method applied to various texture transfer. Initially, the target prompt is directly set to "<texture>", making the texture disentangled from the input image content to enhance texture representation. Subsequently, query features in self-attention and features in residual blocks are utilized to preserve the structure of the input image. Finally, to maintain the background, we introduce an edit localization technique which blends the self-attention results and the intermediate latents. Comprehensive experiments demonstrate that TextureDiffusion can harmoniously transfer various textures with excellent structure and background preservation.
Abstract:Multimodal Large Language Models (MLLMs) have demonstrated great zero-shot performance on visual question answering (VQA). However, when it comes to knowledge-based VQA (KB-VQA), MLLMs may lack human commonsense or specialized domain knowledge to answer such questions and require obtaining necessary information from external knowledge sources. Previous works like Retrival-Augmented VQA-v2 (RAVQA-v2) focus on utilizing as much input information, such as image-based textual descriptions and retrieved knowledge, as possible to improve performance, but they all overlook the issue that with the number of input tokens increasing, inference efficiency significantly decreases, which contradicts the demands of practical applications. To address this issue, we propose Retrieval-Augmented MLLM with Compressed Contexts (RACC). RACC learns to compress and aggregate retrieved contexts, from which it generates a compact modulation in the form of Key-Value (KV) cache. This modulation is then used to adapt the downstream frozen MLLM, thereby achieving effective and efficient inference. RACC achieves a state-of-the-art (SOTA) performance of 62.9% on OK-VQA. Moreover, it significantly reduces inference latency by 22.0%-59.7% compared to the prominent RAVQA-v2. Abundant experiments show RACC's broad applicability. It is compatible with various off-the-shelf MLLMs and can also handle different knowledge sources including textual and multimodal documents.
Abstract:Automatic chart understanding is crucial for content comprehension and document parsing. Multimodal large language models (MLLMs) have demonstrated remarkable capabilities in chart understanding through domain-specific alignment and fine-tuning. However, the application of alignment training within the chart domain is still underexplored. To address this, we propose ChartMoE, which employs the mixture of expert (MoE) architecture to replace the traditional linear projector to bridge the modality gap. Specifically, we train multiple linear connectors through distinct alignment tasks, which are utilized as the foundational initialization parameters for different experts. Additionally, we introduce ChartMoE-Align, a dataset with over 900K chart-table-JSON-code quadruples to conduct three alignment tasks (chart-table/JSON/code). Combined with the vanilla connector, we initialize different experts in four distinct ways and adopt high-quality knowledge learning to further refine the MoE connector and LLM parameters. Extensive experiments demonstrate the effectiveness of the MoE connector and our initialization strategy, e.g., ChartMoE improves the accuracy of the previous state-of-the-art from 80.48% to 84.64% on the ChartQA benchmark.
Abstract:Meta-learning has been extensively applied in the domains of few-shot learning and fast adaptation, achieving remarkable performance. While Meta-learning methods like Model-Agnostic Meta-Learning (MAML) and its variants provide a good set of initial parameters for the model, the model still tends to learn shortcut features, which leads to poor generalization. In this paper, we propose the formal conception of "learn to learn more precisely", which aims to make the model learn precise target knowledge from data and reduce the effect of noisy knowledge, such as background and noise. To achieve this target, we proposed a simple and effective meta-learning framework named Meta Self-Distillation(MSD) to maximize the consistency of learned knowledge, enhancing the models' ability to learn precise target knowledge. In the inner loop, MSD uses different augmented views of the same support data to update the model respectively. Then in the outer loop, MSD utilizes the same query data to optimize the consistency of learned knowledge, enhancing the model's ability to learn more precisely. Our experiment demonstrates that MSD exhibits remarkable performance in few-shot classification tasks in both standard and augmented scenarios, effectively boosting the accuracy and consistency of knowledge learned by the model.
Abstract:Data-Free Meta-Learning (DFML) aims to derive knowledge from a collection of pre-trained models without accessing their original data, enabling the rapid adaptation to new unseen tasks. Current methods often overlook the heterogeneity among pre-trained models, which leads to performance degradation due to task conflicts. In this paper, we empirically and theoretically identify and analyze the model heterogeneity in DFML. We find that model heterogeneity introduces a heterogeneity-homogeneity trade-off, where homogeneous models reduce task conflicts but also increase the overfitting risk. Balancing this trade-off is crucial for learning shared representations across tasks. Based on our findings, we propose Task Groupings Regularization, a novel approach that benefits from model heterogeneity by grouping and aligning conflicting tasks. Specifically, we embed pre-trained models into a task space to compute dissimilarity, and group heterogeneous models together based on this measure. Then, we introduce implicit gradient regularization within each group to mitigate potential conflicts. By encouraging a gradient direction suitable for all tasks, the meta-model captures shared representations that generalize across tasks. Comprehensive experiments showcase the superiority of our approach in multiple benchmarks, effectively tackling the model heterogeneity in challenging multi-domain and multi-architecture scenarios.
Abstract:3D Gaussian Splatting showcases notable advancements in photo-realistic and real-time novel view synthesis. However, it faces challenges in modeling mirror reflections, which exhibit substantial appearance variations from different viewpoints. To tackle this problem, we present MirrorGaussian, the first method for mirror scene reconstruction with real-time rendering based on 3D Gaussian Splatting. The key insight is grounded on the mirror symmetry between the real-world space and the virtual mirror space. We introduce an intuitive dual-rendering strategy that enables differentiable rasterization of both the real-world 3D Gaussians and the mirrored counterpart obtained by reflecting the former about the mirror plane. All 3D Gaussians are jointly optimized with the mirror plane in an end-to-end framework. MirrorGaussian achieves high-quality and real-time rendering in scenes with mirrors, empowering scene editing like adding new mirrors and objects. Comprehensive experiments on multiple datasets demonstrate that our approach significantly outperforms existing methods, achieving state-of-the-art results. Project page: https://mirror-gaussian.github.io/.
Abstract:Data-Free Meta-Learning (DFML) aims to extract knowledge from a collection of pre-trained models without requiring the original data, presenting practical benefits in contexts constrained by data privacy concerns. Current DFML methods primarily focus on the data recovery from these pre-trained models. However, they suffer from slow recovery speed and overlook gaps inherent in heterogeneous pre-trained models. In response to these challenges, we introduce the Faster and Better Data-Free Meta-Learning (FREE) framework, which contains: (i) a meta-generator for rapidly recovering training tasks from pre-trained models; and (ii) a meta-learner for generalizing to new unseen tasks. Specifically, within the module Faster Inversion via Meta-Generator, each pre-trained model is perceived as a distinct task. The meta-generator can rapidly adapt to a specific task in just five steps, significantly accelerating the data recovery. Furthermore, we propose Better Generalization via Meta-Learner and introduce an implicit gradient alignment algorithm to optimize the meta-learner. This is achieved as aligned gradient directions alleviate potential conflicts among tasks from heterogeneous pre-trained models. Empirical experiments on multiple benchmarks affirm the superiority of our approach, marking a notable speed-up (20$\times$) and performance enhancement (1.42\% $\sim$ 4.78\%) in comparison to the state-of-the-art.
Abstract:Image super-resolution is a fundamentally ill-posed problem because multiple valid high-resolution images exist for one low-resolution image. Super-resolution methods based on diffusion probabilistic models can deal with the ill-posed nature by learning the distribution of high-resolution images conditioned on low-resolution images, avoiding the problem of blurry images in PSNR-oriented methods. However, existing diffusion-based super-resolution methods have high time consumption with the use of iterative sampling, while the quality and consistency of generated images are less than ideal due to problems like color shifting. In this paper, we propose Efficient Conditional Diffusion Model with Probability Flow Sampling (ECDP) for image super-resolution. To reduce the time consumption, we design a continuous-time conditional diffusion model for image super-resolution, which enables the use of probability flow sampling for efficient generation. Additionally, to improve the consistency of generated images, we propose a hybrid parametrization for the denoiser network, which interpolates between the data-predicting parametrization and the noise-predicting parametrization for different noise scales. Moreover, we design an image quality loss as a complement to the score matching loss of diffusion models, further improving the consistency and quality of super-resolution. Extensive experiments on DIV2K, ImageNet, and CelebA demonstrate that our method achieves higher super-resolution quality than existing diffusion-based image super-resolution methods while having lower time consumption. Our code is available at https://github.com/Yuan-Yutao/ECDP.
Abstract:In image restoration (IR), leveraging semantic priors from segmentation models has been a common approach to improve performance. The recent segment anything model (SAM) has emerged as a powerful tool for extracting advanced semantic priors to enhance IR tasks. However, the computational cost of SAM is prohibitive for IR, compared to existing smaller IR models. The incorporation of SAM for extracting semantic priors considerably hampers the model inference efficiency. To address this issue, we propose a general framework to distill SAM's semantic knowledge to boost exiting IR models without interfering with their inference process. Specifically, our proposed framework consists of the semantic priors fusion (SPF) scheme and the semantic priors distillation (SPD) scheme. SPF fuses two kinds of information between the restored image predicted by the original IR model and the semantic mask predicted by SAM for the refined restored image. SPD leverages a self-distillation manner to distill the fused semantic priors to boost the performance of original IR models. Additionally, we design a semantic-guided relation (SGR) module for SPD, which ensures semantic feature representation space consistency to fully distill the priors. We demonstrate the effectiveness of our framework across multiple IR models and tasks, including deraining, deblurring, and denoising.